Properties

Label 274890.cx
Number of curves $2$
Conductor $274890$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("cx1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 274890.cx

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
274890.cx1 274890cx2 [1, 0, 1, -7033, -145582] [2] 737280  
274890.cx2 274890cx1 [1, 0, 1, 1297, -15634] [2] 368640 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 274890.cx have rank \(1\).

Complex multiplication

The elliptic curves in class 274890.cx do not have complex multiplication.

Modular form 274890.2.a.cx

sage: E.q_eigenform(10)
 
\( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{8} + q^{9} - q^{10} + q^{11} + q^{12} + q^{15} + q^{16} - q^{17} - q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.