Properties

Label 273600jh
Number of curves $4$
Conductor $273600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("jh1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 273600jh

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
273600.jh3 273600jh1 \([0, 0, 0, -446700, -114226000]\) \(3301293169/22800\) \(68080435200000000\) \([2]\) \(2359296\) \(2.0635\) \(\Gamma_0(N)\)-optimal
273600.jh2 273600jh2 \([0, 0, 0, -734700, 51086000]\) \(14688124849/8122500\) \(24253655040000000000\) \([2, 2]\) \(4718592\) \(2.4101\)  
273600.jh1 273600jh3 \([0, 0, 0, -8942700, 10278254000]\) \(26487576322129/44531250\) \(132969600000000000000\) \([2]\) \(9437184\) \(2.7567\)  
273600.jh4 273600jh4 \([0, 0, 0, 2865300, 403886000]\) \(871257511151/527800050\) \(-1576002504499200000000\) \([2]\) \(9437184\) \(2.7567\)  

Rank

sage: E.rank()
 

The elliptic curves in class 273600jh have rank \(1\).

Complex multiplication

The elliptic curves in class 273600jh do not have complex multiplication.

Modular form 273600.2.a.jh

sage: E.q_eigenform(10)
 
\(q + 4q^{11} + 2q^{13} + 2q^{17} + q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.