Properties

Label 273600hj
Number of curves $4$
Conductor $273600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("273600.hj1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 273600hj

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
273600.hj3 273600hj1 [0, 0, 0, -446700, 114226000] [2] 2359296 \(\Gamma_0(N)\)-optimal
273600.hj2 273600hj2 [0, 0, 0, -734700, -51086000] [2, 2] 4718592  
273600.hj4 273600hj3 [0, 0, 0, 2865300, -403886000] [2] 9437184  
273600.hj1 273600hj4 [0, 0, 0, -8942700, -10278254000] [2] 9437184  

Rank

sage: E.rank()
 

The elliptic curves in class 273600hj have rank \(1\).

Modular form 273600.2.a.hj

sage: E.q_eigenform(10)
 
\( q - 4q^{11} + 2q^{13} + 2q^{17} - q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.