Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-939x+10010\)
|
(homogenize, simplify) |
\(y^2z=x^3-939xz^2+10010z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-939x+10010\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Torsion generators
\( \left(13, 0\right) \), \( \left(22, 0\right) \)
Integral points
\( \left(-35, 0\right) \), \( \left(13, 0\right) \), \( \left(22, 0\right) \)
Invariants
Conductor: | \( 2736 \) | = | $2^{4} \cdot 3^{2} \cdot 19$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $9701462016 $ | = | $2^{12} \cdot 3^{8} \cdot 19^{2} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{30664297}{3249} \) | = | $3^{-2} \cdot 19^{-2} \cdot 313^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $0.65087107241120140673680630932\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $-0.59158225248279874837804843060\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
BSD invariants
Analytic rank: | $0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $1.2531991180917072968750460872\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 32 $ = $ 2^{2}\cdot2^{2}\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $4$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L(E,1) $ ≈ $ 2.5063982361834145937500921744 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 2.506398236 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.253199 \cdot 1.000000 \cdot 32}{4^2} \approx 2.506398236$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1536 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 3 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{4}^{*}$ | Additive | -1 | 4 | 12 | 0 |
$3$ | $4$ | $I_{2}^{*}$ | Additive | -1 | 2 | 8 | 2 |
$19$ | $2$ | $I_{2}$ | Split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 4.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 228 = 2^{2} \cdot 3 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 111 & 224 \\ 226 & 225 \end{array}\right),\left(\begin{array}{rr} 63 & 2 \\ 34 & 227 \end{array}\right),\left(\begin{array}{rr} 225 & 4 \\ 224 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 151 & 226 \\ 0 & 227 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[228])$ is a degree-$11819520$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/228\Z)$.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
Iwasawa invariants
$p$ | 2 | 3 | 19 |
---|---|---|---|
Reduction type | add | add | split |
$\lambda$-invariant(s) | - | - | 1 |
$\mu$-invariant(s) | - | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 2736.s
consists of 4 curves linked by isogenies of
degrees dividing 4.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{57}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{19})\) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$4$ | \(\Q(\zeta_{12})\) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.2702336256.1 | \(\Z/4\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.4.561912991727616.28 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$8$ | 8.2.5910009391872.3 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.