Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 2736.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2736.b1 | 2736d2 | \([0, 0, 0, -2727, -54810]\) | \(445090032/19\) | \(95738112\) | \([2]\) | \(2688\) | \(0.61090\) | |
2736.b2 | 2736d1 | \([0, 0, 0, -162, -945]\) | \(-1492992/361\) | \(-113689008\) | \([2]\) | \(1344\) | \(0.26432\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 2736.b have rank \(0\).
Complex multiplication
The elliptic curves in class 2736.b do not have complex multiplication.Modular form 2736.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.