Properties

Label 272832.fb
Number of curves $6$
Conductor $272832$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("272832.fb1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 272832.fb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
272832.fb1 272832fb3 [0, 1, 0, -641700929, 6256511805375] [2] 37748736  
272832.fb2 272832fb6 [0, 1, 0, -133182849, -480959045505] [2] 75497472  
272832.fb3 272832fb4 [0, 1, 0, -40874689, 93806943551] [2, 2] 37748736  
272832.fb4 272832fb2 [0, 1, 0, -40106369, 97747656831] [2, 2] 18874368  
272832.fb5 272832fb1 [0, 1, 0, -2458689, 1587952575] [2] 9437184 \(\Gamma_0(N)\)-optimal
272832.fb6 272832fb5 [0, 1, 0, 39140351, 416379575807] [2] 75497472  

Rank

sage: E.rank()
 

The elliptic curves in class 272832.fb have rank \(0\).

Modular form 272832.2.a.fb

sage: E.q_eigenform(10)
 
\( q + q^{3} - 2q^{5} + q^{9} + 4q^{11} - 2q^{13} - 2q^{15} - 2q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 8 & 4 & 2 & 4 & 8 \\ 8 & 1 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 2 & 4 & 2 \\ 2 & 4 & 2 & 1 & 2 & 4 \\ 4 & 8 & 4 & 2 & 1 & 8 \\ 8 & 4 & 2 & 4 & 8 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.