Show commands for:
SageMath
sage: E = EllipticCurve("bm1")
sage: E.isogeny_class()
Elliptic curves in class 27225bm
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
27225.g2 | 27225bm1 | [1, -1, 1, -6755, 215372] | [] | 20160 | \(\Gamma_0(N)\)-optimal |
27225.g1 | 27225bm2 | [1, -1, 1, -68630, -27034378] | [] | 221760 |
Rank
sage: E.rank()
The elliptic curves in class 27225bm have rank \(1\).
Complex multiplication
The elliptic curves in class 27225bm do not have complex multiplication.Modular form 27225.2.a.bm
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.