# Properties

 Label 27225.bu Number of curves $2$ Conductor $27225$ CM no Rank $1$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("bu1")

sage: E.isogeny_class()

## Elliptic curves in class 27225.bu

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
27225.bu1 27225bj2 [1, -1, 0, -817317, -284208534] [] 221760
27225.bu2 27225bj1 [1, -1, 0, -567, 20466] [] 20160 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 27225.bu have rank $$1$$.

## Complex multiplication

The elliptic curves in class 27225.bu do not have complex multiplication.

## Modular form 27225.2.a.bu

sage: E.q_eigenform(10)

$$q + q^{2} - q^{4} + 2q^{7} - 3q^{8} - q^{13} + 2q^{14} - q^{16} - 5q^{17} + 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.