Learn more

Refine search


Results (1-50 of 93 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
27225.a1 27225.a \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -99825, -12353344]$ \(y^2+y=x^3-99825x-12353344\) 6.2.0.a.1 $[ ]$
27225.b1 27225.b \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $5.479906245$ $[0, 0, 1, -226875, -42633594]$ \(y^2+y=x^3-226875x-42633594\) 5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 110.24.0.?, 165.24.0.?, $\ldots$ $[(6809/2, 536873/2)]$
27225.b2 27225.b \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.095981249$ $[0, 0, 1, 1815, 131436]$ \(y^2+y=x^3+1815x+131436\) 5.12.0.a.1, 6.2.0.a.1, 30.24.1.d.1, 110.24.0.?, 165.24.0.?, $\ldots$ $[(44, 544)]$
27225.c1 27225.c \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.985670643$ $[0, 0, 1, 99825, 2287656]$ \(y^2+y=x^3+99825x+2287656\) 6.2.0.a.1 $[(0, 1512)]$
27225.d1 27225.d \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -7425, -250594]$ \(y^2+y=x^3-7425x-250594\) 6.2.0.a.1 $[ ]$
27225.e1 27225.e \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -14180, -3505928]$ \(y^2+xy+y=x^3-x^2-14180x-3505928\) 132.2.0.? $[ ]$
27225.f1 27225.f \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -50480, -4328728]$ \(y^2+xy+y=x^3-x^2-50480x-4328728\) 2.3.0.a.1, 12.6.0.a.1, 44.6.0.e.1, 132.12.0.? $[ ]$
27225.f2 27225.f \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -5105, 27272]$ \(y^2+xy+y=x^3-x^2-5105x+27272\) 2.3.0.a.1, 12.6.0.b.1, 44.6.0.e.1, 66.6.0.a.1, 132.12.0.? $[ ]$
27225.g1 27225.g \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $11.65791185$ $[1, -1, 1, -68630, -27034378]$ \(y^2+xy+y=x^3-x^2-68630x-27034378\) 4.2.0.a.1, 11.60.1.b.1, 44.120.6.b.1, 88.240.16.?, 165.120.1.?, $\ldots$ $[(231642/23, 60237410/23)]$
27225.g2 27225.g \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.059810169$ $[1, -1, 1, -6755, 215372]$ \(y^2+xy+y=x^3-x^2-6755x+215372\) 4.2.0.a.1, 11.60.1.b.2, 44.120.6.b.2, 88.240.16.?, 165.120.1.?, $\ldots$ $[(48, -20)]$
27225.h1 27225.h \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $2.708643751$ $[1, -1, 1, -3961805, 3552290822]$ \(y^2+xy+y=x^3-x^2-3961805x+3552290822\) 132.2.0.? $[(-4113/2, 650975/2)]$
27225.i1 27225.i \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -1310, -21018]$ \(y^2+xy+y=x^3-x^2-1310x-21018\) 132.2.0.? $[ ]$
27225.j1 27225.j \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -1066880, -423885338]$ \(y^2+xy+y=x^3-x^2-1066880x-423885338\) 5.10.0.a.1, 6.6.0.b.1, 10.20.0.a.1, 15.20.0.b.1, 30.120.7.e.1 $[ ]$
27225.k1 27225.k \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.813111906$ $[1, -1, 1, -220430, 39889072]$ \(y^2+xy+y=x^3-x^2-220430x+39889072\) 5.10.0.a.1, 6.6.0.b.1, 10.20.0.a.1, 15.20.0.b.1, 30.120.7.e.1 $[(268, -40)]$
27225.l1 27225.l \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $1.297406796$ $[1, -1, 1, -1611380, 787507372]$ \(y^2+xy+y=x^3-x^2-1611380x+787507372\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.5, 40.12.0.z.1, 44.12.0.h.1, $\ldots$ $[(718, 185)]$
27225.l2 27225.l \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $5.189627184$ $[1, -1, 1, -794630, -266100128]$ \(y^2+xy+y=x^3-x^2-794630x-266100128\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 24.12.0-4.c.1.5, $\ldots$ $[(2179, 90260)]$
27225.l3 27225.l \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.594813592$ $[1, -1, 1, -114005, 8872372]$ \(y^2+xy+y=x^3-x^2-114005x+8872372\) 2.6.0.a.1, 12.12.0-2.a.1.2, 20.12.0.b.1, 44.12.0.a.1, 60.24.0-20.b.1.4, $\ldots$ $[(364, 3755)]$
27225.l4 27225.l \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $5.189627184$ $[1, -1, 1, 22120, 977122]$ \(y^2+xy+y=x^3-x^2+22120x+977122\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.5, 40.12.0.z.1, 60.12.0-4.c.1.2, $\ldots$ $[(8, 1070)]$
27225.m1 27225.m \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.452696479$ $[1, -1, 1, -2963555, 1964407822]$ \(y^2+xy+y=x^3-x^2-2963555x+1964407822\) 5.10.0.a.1, 6.6.0.b.1, 10.20.0.a.1, 15.20.0.b.1, 30.120.7.e.1 $[(994, -535)]$
27225.n1 27225.n \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -980, -11558]$ \(y^2+xy+y=x^3-x^2-980x-11558\) 5.10.0.a.1, 6.6.0.b.1, 10.20.0.a.1, 15.20.0.b.1, 30.120.7.e.1 $[ ]$
27225.o1 27225.o \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -368105, -52123728]$ \(y^2+xy+y=x^3-x^2-368105x-52123728\) 2.3.0.a.1, 12.6.0.f.1, 44.6.0.c.1, 66.6.0.a.1, 132.12.0.? $[ ]$
27225.o2 27225.o \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 1129270, -369567228]$ \(y^2+xy+y=x^3-x^2+1129270x-369567228\) 2.3.0.a.1, 12.6.0.f.1, 22.6.0.a.1, 132.12.0.? $[ ]$
27225.p1 27225.p \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $5.589755737$ $[1, -1, 1, -2630, -111878]$ \(y^2+xy+y=x^3-x^2-2630x-111878\) 20.2.0.a.1 $[(1304, 46385)]$
27225.q1 27225.q \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.986403284$ $[1, -1, 1, -5105, 759322]$ \(y^2+xy+y=x^3-x^2-5105x+759322\) 132.2.0.? $[(223, 3155)]$
27225.r1 27225.r \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.146444646$ $[1, -1, 1, -3989030, 3064527722]$ \(y^2+xy+y=x^3-x^2-3989030x+3064527722\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 40.12.0-4.c.1.3, 88.12.0.?, $\ldots$ $[(1114, 955)]$
27225.r2 27225.r \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.292889292$ $[1, -1, 1, -313655, 21317222]$ \(y^2+xy+y=x^3-x^2-313655x+21317222\) 2.6.0.a.1, 12.12.0.a.1, 20.12.0-2.a.1.2, 44.12.0.b.1, 60.24.0-12.a.1.4, $\ldots$ $[(-470, 8281)]$
27225.r3 27225.r \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $8.585778584$ $[1, -1, 1, -177530, -28504528]$ \(y^2+xy+y=x^3-x^2-177530x-28504528\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 40.12.0-4.c.1.3, 60.12.0-4.c.1.2, $\ldots$ $[(68436/7, 16725640/7)]$
27225.r4 27225.r \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.146444646$ $[1, -1, 1, 1183720, 165065222]$ \(y^2+xy+y=x^3-x^2+1183720x+165065222\) 2.3.0.a.1, 4.6.0.c.1, 22.6.0.a.1, 24.12.0.ba.1, 40.12.0-4.c.1.3, $\ldots$ $[(1884, 94345)]$
27225.s1 27225.s \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $3.228271647$ $[1, -1, 1, -63680, -6140428]$ \(y^2+xy+y=x^3-x^2-63680x-6140428\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.cb.1, 40.12.0.bs.1, 88.12.0.?, $\ldots$ $[(-140, 196)]$
27225.s2 27225.s \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $6.456543294$ $[1, -1, 1, -1805, -200428]$ \(y^2+xy+y=x^3-x^2-1805x-200428\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.cb.1, 40.12.0.bv.1, 60.12.0.bn.1, $\ldots$ $[(598, 14271)]$
27225.t1 27225.t \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.654249255$ $[1, -1, 1, -308210, 65629842]$ \(y^2+xy+y=x^3-x^2-308210x+65629842\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.cb.1, 40.12.0.bs.1, 88.12.0.?, $\ldots$ $[(-30, 8666)]$
27225.t2 27225.t \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $5.308498510$ $[1, -1, 1, -8735, 2141142]$ \(y^2+xy+y=x^3-x^2-8735x+2141142\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.cb.1, 40.12.0.bv.1, 60.12.0.bn.1, $\ldots$ $[(18, 1401)]$
27225.u1 27225.u \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $-3$ $0.655006394$ $[0, 0, 1, 0, -207969]$ \(y^2+y=x^3-207969\) $[(275, 4537)]$
27225.u2 27225.u \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $-3$ $1.965019184$ $[0, 0, 1, 0, 5615156]$ \(y^2+y=x^3+5615156\) $[(264, 4900)]$
27225.v1 27225.v \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $2$ $\mathsf{trivial}$ $-3$ $4.252648328$ $[0, 0, 1, 0, -102094]$ \(y^2+y=x^3-102094\) $[(60, 337), (114, 1174)]$
27225.v2 27225.v \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $2$ $\mathsf{trivial}$ $-3$ $0.472516480$ $[0, 0, 1, 0, 3781]$ \(y^2+y=x^3+3781\) $[(55, 412), (-11, 49)]$
27225.w1 27225.w \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $-3$ $0.450203675$ $[0, 0, 1, 0, -69]$ \(y^2+y=x^3-69\) $[(5, 7)]$
27225.w2 27225.w \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $-3$ $1.350611027$ $[0, 0, 1, 0, 1856]$ \(y^2+y=x^3+1856\) $[(-6, 40)]$
27225.x1 27225.x \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 1, 0, -308833594]$ \(y^2+y=x^3-308833594\) $[ ]$
27225.x2 27225.x \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 1, 0, 11438281]$ \(y^2+y=x^3+11438281\) $[ ]$
27225.y1 27225.y \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.925551758$ $[0, 0, 1, -25410, 1635466]$ \(y^2+y=x^3-25410x+1635466\) 3.4.0.a.1, 6.8.0.b.1, 165.8.0.?, 330.16.0.? $[(-44, 1633)]$
27225.y2 27225.y \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $2.776655274$ $[0, 0, 1, 137940, 2893261]$ \(y^2+y=x^3+137940x+2893261\) 3.4.0.a.1, 6.8.0.b.1, 165.8.0.?, 330.16.0.? $[(451, 12523)]$
27225.z1 27225.z \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $7.112979189$ $[0, 0, 1, -1348050, -602431844]$ \(y^2+y=x^3-1348050x-602431844\) 3.4.0.a.1, 6.8.0.b.1, 165.8.0.?, 330.16.0.? $[(7726, 670936)]$
27225.z2 27225.z \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $2.370993063$ $[0, 0, 1, -11550, -1340969]$ \(y^2+y=x^3-11550x-1340969\) 3.4.0.a.1, 6.8.0.b.1, 165.8.0.?, 330.16.0.? $[(301, 4738)]$
27225.ba1 27225.ba \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $-11$ $1$ $[0, 0, 1, -199650, 35229906]$ \(y^2+y=x^3-199650x+35229906\) $[ ]$
27225.ba2 27225.ba \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $-11$ $1$ $[0, 0, 1, -1650, -26469]$ \(y^2+y=x^3-1650x-26469\) $[ ]$
27225.bb1 27225.bb \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.313313683$ $[0, 0, 1, -163114050, 801836784031]$ \(y^2+y=x^3-163114050x+801836784031\) 3.4.0.a.1, 6.8.0.b.1, 15.8.0-3.a.1.2, 30.16.0-6.b.1.2 $[(7381, 1633)]$
27225.bb2 27225.bb \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $3.939941049$ $[0, 0, 1, -1397550, 1784829406]$ \(y^2+y=x^3-1397550x+1784829406\) 3.4.0.a.1, 6.8.0.b.1, 15.8.0-3.a.1.1, 30.16.0-6.b.1.1 $[(334, 36814)]$
27225.bc1 27225.bc \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -635250, 204433281]$ \(y^2+y=x^3-635250x+204433281\) 3.4.0.a.1, 6.8.0.b.1, 33.8.0-3.a.1.1, 66.16.0-6.b.1.1 $[ ]$
27225.bc2 27225.bc \( 3^{2} \cdot 5^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 3448500, 361657656]$ \(y^2+y=x^3+3448500x+361657656\) 3.4.0.a.1, 6.8.0.b.1, 33.8.0-3.a.1.2, 66.16.0-6.b.1.2 $[ ]$
Next   displayed columns for results