Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
271440.a1 |
271440a2 |
271440.a |
271440a |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{3} \cdot 13 \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$13.56999952$ |
$1$ |
|
$2$ |
$8398080$ |
$2.474300$ |
$2703825676414184390656/39632125$ |
$[0, 0, 0, -16585968, -25999161892]$ |
\(y^2=x^3-16585968x-25999161892\) |
271440.a2 |
271440a1 |
271440.a |
271440a |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{9} \cdot 13^{3} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4.523333175$ |
$1$ |
|
$2$ |
$2799360$ |
$1.924994$ |
$5177921645510656/124439453125$ |
$[0, 0, 0, -205968, -35223892]$ |
\(y^2=x^3-205968x-35223892\) |
271440.b1 |
271440b1 |
271440.b |
271440b |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{20} \cdot 3^{8} \cdot 5 \cdot 13^{3} \cdot 29^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$2654208$ |
$2.003517$ |
$764579942079121/21285239040$ |
$[0, 0, 0, -274323, -53955502]$ |
\(y^2=x^3-274323x-53955502\) |
271440.b2 |
271440b2 |
271440.b |
271440b |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{16} \cdot 3^{10} \cdot 5^{2} \cdot 13^{6} \cdot 29 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$5308416$ |
$2.350090$ |
$7903193128559/4535269736400$ |
$[0, 0, 0, 59757, -176963758]$ |
\(y^2=x^3+59757x-176963758\) |
271440.c1 |
271440c1 |
271440.c |
271440c |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{4} \cdot 3^{10} \cdot 5 \cdot 13 \cdot 29 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.22 |
2B |
$10.44129529$ |
$1$ |
|
$1$ |
$368640$ |
$0.814621$ |
$1690201440256/152685$ |
$[0, 0, 0, -5628, -162497]$ |
\(y^2=x^3-5628x-162497\) |
271440.c2 |
271440c2 |
271440.c |
271440c |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{8} \cdot 3^{8} \cdot 5^{2} \cdot 13^{2} \cdot 29^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.37 |
2B |
$5.220647649$ |
$1$ |
|
$3$ |
$737280$ |
$1.161196$ |
$-84433792336/31979025$ |
$[0, 0, 0, -5223, -186878]$ |
\(y^2=x^3-5223x-186878\) |
271440.d1 |
271440d2 |
271440.d |
271440d |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{15} \cdot 3^{9} \cdot 5^{8} \cdot 13^{2} \cdot 29^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$7520256$ |
$2.561371$ |
$35283356390293803/444153125000$ |
$[0, 0, 0, -2951883, -1930728582]$ |
\(y^2=x^3-2951883x-1930728582\) |
271440.d2 |
271440d1 |
271440.d |
271440d |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{18} \cdot 3^{9} \cdot 5^{4} \cdot 13^{4} \cdot 29 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$3760128$ |
$2.214798$ |
$-43132764843/33130760000$ |
$[0, 0, 0, -31563, -78661638]$ |
\(y^2=x^3-31563x-78661638\) |
271440.e1 |
271440e1 |
271440.e |
271440e |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{5} \cdot 13 \cdot 29 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$950400$ |
$1.528919$ |
$-17175508997401/9425000$ |
$[0, 0, 0, -77403, -8292598]$ |
\(y^2=x^3-77403x-8292598\) |
271440.f1 |
271440f1 |
271440.f |
271440f |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5 \cdot 13^{2} \cdot 29 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$368640$ |
$0.767900$ |
$-8069733376/73515$ |
$[0, 0, 0, -2388, -45268]$ |
\(y^2=x^3-2388x-45268\) |
271440.g1 |
271440g1 |
271440.g |
271440g |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{13} \cdot 13 \cdot 29^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6.466178808$ |
$1$ |
|
$2$ |
$2635776$ |
$1.939598$ |
$-2619826298606592/13345947265625$ |
$[0, 0, 0, -54708, -15420532]$ |
\(y^2=x^3-54708x-15420532\) |
271440.h1 |
271440h1 |
271440.h |
271440h |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{8} \cdot 3^{6} \cdot 5 \cdot 13 \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4.845266201$ |
$1$ |
|
$0$ |
$345600$ |
$1.030832$ |
$209240544256/1585285$ |
$[0, 0, 0, -7068, 227212]$ |
\(y^2=x^3-7068x+227212\) |
271440.i1 |
271440i1 |
271440.i |
271440i |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{8} \cdot 3^{3} \cdot 5 \cdot 13 \cdot 29^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.760105576$ |
$1$ |
|
$2$ |
$132096$ |
$0.494281$ |
$-11203633152/54665$ |
$[0, 0, 0, -888, -10228]$ |
\(y^2=x^3-888x-10228\) |
271440.j1 |
271440j1 |
271440.j |
271440j |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{4} \cdot 3^{6} \cdot 5 \cdot 13^{2} \cdot 29^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$196608$ |
$0.749385$ |
$139094654976/710645$ |
$[0, 0, 0, -2448, -46413]$ |
\(y^2=x^3-2448x-46413\) |
271440.j2 |
271440j2 |
271440.j |
271440j |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{8} \cdot 3^{6} \cdot 5^{2} \cdot 13^{4} \cdot 29 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$393216$ |
$1.095959$ |
$-884901456/20706725$ |
$[0, 0, 0, -1143, -95742]$ |
\(y^2=x^3-1143x-95742\) |
271440.k1 |
271440k2 |
271440.k |
271440k |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{13} \cdot 3^{9} \cdot 5^{6} \cdot 13 \cdot 29 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1.734043232$ |
$1$ |
|
$8$ |
$3234816$ |
$2.127438$ |
$-6083088015781323/11781250$ |
$[0, 0, 0, -1642923, 810540378]$ |
\(y^2=x^3-1642923x+810540378\) |
271440.k2 |
271440k1 |
271440.k |
271440k |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{15} \cdot 3^{3} \cdot 5^{2} \cdot 13^{3} \cdot 29^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.192671470$ |
$1$ |
|
$24$ |
$1078272$ |
$1.578133$ |
$-2913790403187/10716526600$ |
$[0, 0, 0, -14283, 1781882]$ |
\(y^2=x^3-14283x+1781882\) |
271440.l1 |
271440l1 |
271440.l |
271440l |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{33} \cdot 3^{3} \cdot 5^{2} \cdot 13^{9} \cdot 29^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2.407419135$ |
$1$ |
|
$4$ |
$113218560$ |
$4.030434$ |
$-1251701744499641551742491347/13559824919198275993600$ |
$[0, 0, 0, -1077705963, -13744402884838]$ |
\(y^2=x^3-1077705963x-13744402884838\) |
271440.l2 |
271440l2 |
271440.l |
271440l |
$2$ |
$3$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{19} \cdot 3^{9} \cdot 5^{6} \cdot 13^{3} \cdot 29^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$7.222257406$ |
$1$ |
|
$2$ |
$339655680$ |
$4.579742$ |
$62898697943298124177490037/63744399417968386000000$ |
$[0, 0, 0, 3579230997, -71436513206502]$ |
\(y^2=x^3+3579230997x-71436513206502\) |
271440.m1 |
271440m1 |
271440.m |
271440m |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{2} \cdot 13 \cdot 29 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$2.345263208$ |
$1$ |
|
$5$ |
$344064$ |
$1.087179$ |
$13378610007376/9425$ |
$[0, 0, 0, -28263, 1828838]$ |
\(y^2=x^3-28263x+1828838\) |
271440.m2 |
271440m2 |
271440.m |
271440m |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{10} \cdot 3^{6} \cdot 5^{4} \cdot 13^{2} \cdot 29^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$1.172631604$ |
$1$ |
|
$7$ |
$688128$ |
$1.433752$ |
$-3281154851524/88830625$ |
$[0, 0, 0, -28083, 1853282]$ |
\(y^2=x^3-28083x+1853282\) |
271440.n1 |
271440n1 |
271440.n |
271440n |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{11} \cdot 3^{19} \cdot 5^{4} \cdot 13^{3} \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.981130224$ |
$1$ |
|
$2$ |
$7188480$ |
$2.514187$ |
$5809117569025678/63486938311875$ |
$[0, 0, 0, 428037, 455842762]$ |
\(y^2=x^3+428037x+455842762\) |
271440.o1 |
271440o1 |
271440.o |
271440o |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{23} \cdot 3^{3} \cdot 5^{2} \cdot 13 \cdot 29 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.870153888$ |
$1$ |
|
$4$ |
$371712$ |
$1.053049$ |
$20956092093/19302400$ |
$[0, 0, 0, 2757, 42858]$ |
\(y^2=x^3+2757x+42858\) |
271440.p1 |
271440p1 |
271440.p |
271440p |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{17} \cdot 3^{7} \cdot 5^{4} \cdot 13 \cdot 29^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.252149698$ |
$1$ |
|
$6$ |
$9523200$ |
$2.687996$ |
$-13611534355369215721/15998696220000$ |
$[0, 0, 0, -7162923, 7386252122]$ |
\(y^2=x^3-7162923x+7386252122\) |
271440.q1 |
271440q1 |
271440.q |
271440q |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{12} \cdot 3^{9} \cdot 5 \cdot 13^{5} \cdot 29^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$4147200$ |
$2.356457$ |
$-913621755765293056/42154750755$ |
$[0, 0, 0, -2911008, -1911747472]$ |
\(y^2=x^3-2911008x-1911747472\) |
271440.r1 |
271440r1 |
271440.r |
271440r |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{12} \cdot 3^{9} \cdot 5 \cdot 13 \cdot 29^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1271808$ |
$1.666826$ |
$452984832/45973265$ |
$[0, 0, 0, 6912, 2920752]$ |
\(y^2=x^3+6912x+2920752\) |
271440.s1 |
271440s1 |
271440.s |
271440s |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{8} \cdot 3^{11} \cdot 5 \cdot 13^{3} \cdot 29^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$829440$ |
$1.485222$ |
$26556760064/2244927555$ |
$[0, 0, 0, 3552, -981412]$ |
\(y^2=x^3+3552x-981412\) |
271440.t1 |
271440t2 |
271440.t |
271440t |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{2} \cdot 13^{3} \cdot 29^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1.349900090$ |
$1$ |
|
$15$ |
$4718592$ |
$2.204449$ |
$10868685473848063696/3741545925$ |
$[0, 0, 0, -2637183, 1648383982]$ |
\(y^2=x^3-2637183x+1648383982\) |
271440.t2 |
271440t1 |
271440.t |
271440t |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 13^{6} \cdot 29 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5.399600362$ |
$1$ |
|
$7$ |
$2359296$ |
$1.857876$ |
$43025578182363136/787373218125$ |
$[0, 0, 0, -165558, 25515007]$ |
\(y^2=x^3-165558x+25515007\) |
271440.u1 |
271440u4 |
271440.u |
271440u |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{15} \cdot 3^{9} \cdot 5^{3} \cdot 13^{8} \cdot 29 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$21.62076060$ |
$1$ |
|
$1$ |
$53084160$ |
$3.529240$ |
$8057323694463985606146481/638717154543000$ |
$[0, 0, 0, -601429683, -5677084671118]$ |
\(y^2=x^3-601429683x-5677084671118\) |
271440.u2 |
271440u2 |
271440.u |
271440u |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{18} \cdot 3^{12} \cdot 5^{6} \cdot 13^{4} \cdot 29^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$10.81038030$ |
$1$ |
|
$3$ |
$26542080$ |
$3.182667$ |
$1979758117698975186481/17510434929000000$ |
$[0, 0, 0, -37669683, -88306287118]$ |
\(y^2=x^3-37669683x-88306287118\) |
271440.u3 |
271440u3 |
271440.u |
271440u |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{15} \cdot 3^{9} \cdot 5^{12} \cdot 13^{2} \cdot 29^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$21.62076060$ |
$1$ |
|
$1$ |
$53084160$ |
$3.529240$ |
$-54681655838565466801/6303365630859375000$ |
$[0, 0, 0, -11386803, -209254844302]$ |
\(y^2=x^3-11386803x-209254844302\) |
271440.u4 |
271440u1 |
271440.u |
271440u |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{24} \cdot 3^{18} \cdot 5^{3} \cdot 13^{2} \cdot 29 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$5.405190150$ |
$1$ |
|
$3$ |
$13271040$ |
$2.836090$ |
$2510581756496128561/1333551278592000$ |
$[0, 0, 0, -4077363, 908196338]$ |
\(y^2=x^3-4077363x+908196338\) |
271440.v1 |
271440v1 |
271440.v |
271440v |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{20} \cdot 3^{12} \cdot 5 \cdot 13 \cdot 29^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$1474560$ |
$1.885349$ |
$63812982460681/10201800960$ |
$[0, 0, 0, -119883, 13591802]$ |
\(y^2=x^3-119883x+13591802\) |
271440.v2 |
271440v2 |
271440.v |
271440v |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{16} \cdot 3^{18} \cdot 5^{2} \cdot 13^{2} \cdot 29 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$2949120$ |
$2.231922$ |
$363979050334199/1041836936400$ |
$[0, 0, 0, 214197, 75797498]$ |
\(y^2=x^3+214197x+75797498\) |
271440.w1 |
271440w3 |
271440.w |
271440w |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{11} \cdot 3^{7} \cdot 5^{2} \cdot 13 \cdot 29^{4} \) |
$2$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$3.401130358$ |
$1$ |
|
$23$ |
$1769472$ |
$1.886290$ |
$3966652437499442/689598975$ |
$[0, 0, 0, -376923, 89055722]$ |
\(y^2=x^3-376923x+89055722\) |
271440.w2 |
271440w4 |
271440.w |
271440w |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{11} \cdot 3^{10} \cdot 5^{8} \cdot 13 \cdot 29 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$13.60452143$ |
$1$ |
|
$7$ |
$1769472$ |
$1.886290$ |
$312850560793682/11928515625$ |
$[0, 0, 0, -161643, -24175942]$ |
\(y^2=x^3-161643x-24175942\) |
271440.w3 |
271440w2 |
271440.w |
271440w |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{4} \cdot 13^{2} \cdot 29^{2} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$3.401130358$ |
$1$ |
|
$23$ |
$884736$ |
$1.539717$ |
$2580786074884/799475625$ |
$[0, 0, 0, -25923, 1095122]$ |
\(y^2=x^3-25923x+1095122\) |
271440.w4 |
271440w1 |
271440.w |
271440w |
$4$ |
$4$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{2} \cdot 13^{4} \cdot 29 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$3.401130358$ |
$1$ |
|
$13$ |
$442368$ |
$1.193142$ |
$53892071984/62120175$ |
$[0, 0, 0, 4497, 115598]$ |
\(y^2=x^3+4497x+115598\) |
271440.x1 |
271440x6 |
271440.x |
271440x |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{14} \cdot 3^{10} \cdot 5^{2} \cdot 13^{8} \cdot 29 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$1$ |
$1$ |
|
$1$ |
$31457280$ |
$3.282951$ |
$217764763259392950709681/191615146362900$ |
$[0, 0, 0, -180488883, -933304735118]$ |
\(y^2=x^3-180488883x-933304735118\) |
271440.x2 |
271440x4 |
271440.x |
271440x |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{16} \cdot 3^{14} \cdot 5^{4} \cdot 13^{4} \cdot 29^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$1$ |
$1$ |
|
$3$ |
$15728640$ |
$2.936378$ |
$54309086480107021681/1575939143610000$ |
$[0, 0, 0, -11360883, -14364659918]$ |
\(y^2=x^3-11360883x-14364659918\) |
271440.x3 |
271440x2 |
271440.x |
271440x |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{20} \cdot 3^{10} \cdot 5^{2} \cdot 13^{2} \cdot 29^{4} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$1$ |
$1$ |
|
$3$ |
$7864320$ |
$2.589806$ |
$173294065906331761/61964605497600$ |
$[0, 0, 0, -1672563, 514661938]$ |
\(y^2=x^3-1672563x+514661938\) |
271440.x4 |
271440x1 |
271440.x |
271440x |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{28} \cdot 3^{8} \cdot 5 \cdot 13 \cdot 29^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$1$ |
$1$ |
|
$1$ |
$3932160$ |
$2.243229$ |
$122083727651299441/32242728960$ |
$[0, 0, 0, -1488243, 698650162]$ |
\(y^2=x^3-1488243x+698650162\) |
271440.x5 |
271440x5 |
271440.x |
271440x |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{14} \cdot 3^{22} \cdot 5^{8} \cdot 13^{2} \cdot 29 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$1$ |
$4$ |
$2$ |
$1$ |
$31457280$ |
$3.282951$ |
$773618103830753999/329643718157812500$ |
$[0, 0, 0, 2753997, -47701183502]$ |
\(y^2=x^3+2753997x-47701183502\) |
271440.x6 |
271440x3 |
271440.x |
271440x |
$6$ |
$8$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{16} \cdot 3^{8} \cdot 5 \cdot 13 \cdot 29^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$1$ |
$4$ |
$2$ |
$1$ |
$15728640$ |
$2.936378$ |
$4817210305461175439/4682306425314960$ |
$[0, 0, 0, 5066637, 3618737458]$ |
\(y^2=x^3+5066637x+3618737458\) |
271440.y1 |
271440y1 |
271440.y |
271440y |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{11} \cdot 3^{6} \cdot 5 \cdot 13 \cdot 29^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$478080$ |
$1.058653$ |
$743389918/1585285$ |
$[0, 0, 0, 2157, -63182]$ |
\(y^2=x^3+2157x-63182\) |
271440.z1 |
271440z1 |
271440.z |
271440z |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( - 2^{12} \cdot 3^{9} \cdot 5^{3} \cdot 13^{2} \cdot 29 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$552960$ |
$1.306448$ |
$-4096/16540875$ |
$[0, 0, 0, -48, -338128]$ |
\(y^2=x^3-48x-338128\) |
271440.ba1 |
271440ba2 |
271440.ba |
271440ba |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{10} \cdot 3^{6} \cdot 5^{2} \cdot 13^{2} \cdot 29 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1.569926208$ |
$1$ |
|
$19$ |
$221184$ |
$0.956626$ |
$28355811844/122525$ |
$[0, 0, 0, -5763, 167762]$ |
\(y^2=x^3-5763x+167762\) |
271440.ba2 |
271440ba1 |
271440.ba |
271440ba |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{8} \cdot 3^{6} \cdot 5 \cdot 13 \cdot 29^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$6.279704834$ |
$1$ |
|
$9$ |
$110592$ |
$0.610052$ |
$94875856/54665$ |
$[0, 0, 0, -543, -322]$ |
\(y^2=x^3-543x-322\) |
271440.bb1 |
271440bb1 |
271440.bb |
271440bb |
$2$ |
$2$ |
\( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \cdot 29 \) |
\( 2^{4} \cdot 3^{10} \cdot 5^{3} \cdot 13 \cdot 29 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.22 |
2B |
$6.760574101$ |
$1$ |
|
$1$ |
$663552$ |
$1.453058$ |
$26775969499365376/3817125$ |
$[0, 0, 0, -141348, 20454203]$ |
\(y^2=x^3-141348x+20454203\) |