Properties

Label 270802.s
Number of curves $2$
Conductor $270802$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("s1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 270802.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
270802.s1 270802s2 \([1, -1, 1, -532766089, -4733046276727]\) \(28115476317271727409033/150871003136\) \(89741591127956934656\) \([2]\) \(46448640\) \(3.4442\)  
270802.s2 270802s1 \([1, -1, 1, -33279369, -74033947255]\) \(-6852688047169144713/15901562765312\) \(-9458620373152827441152\) \([2]\) \(23224320\) \(3.0976\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 270802.s have rank \(0\).

Complex multiplication

The elliptic curves in class 270802.s do not have complex multiplication.

Modular form 270802.2.a.s

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 2q^{5} + q^{7} + q^{8} - 3q^{9} + 2q^{10} + 2q^{11} + 2q^{13} + q^{14} + q^{16} - 3q^{18} - 6q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.