Properties

Label 270802.l
Number of curves $1$
Conductor $270802$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("l1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 270802.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
270802.l1 270802l1 \([1, -1, 1, 10858689, 4804578279]\) \(5805798253576046271027/3769183309498679296\) \(-91926611735363289350144\) \([]\) \(63124992\) \(3.0952\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 270802.l1 has rank \(1\).

Complex multiplication

The elliptic curves in class 270802.l do not have complex multiplication.

Modular form 270802.2.a.l

sage: E.q_eigenform(10)
 
\(q + q^{2} - 3q^{3} + q^{4} + 3q^{5} - 3q^{6} - q^{7} + q^{8} + 6q^{9} + 3q^{10} + 5q^{11} - 3q^{12} + q^{13} - q^{14} - 9q^{15} + q^{16} + 2q^{17} + 6q^{18} - 4q^{19} + O(q^{20})\)  Toggle raw display