Learn more

Refine search


Results (24 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
2704.a1 2704.a \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -28561, -1856465]$ \(y^2=x^3-28561x-1856465\) 2.2.0.a.1, 26.6.0.a.1, 52.12.0-26.a.1.1
2704.b1 2704.b \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -169, -845]$ \(y^2=x^3-169x-845\) 2.2.0.a.1, 4.4.0-2.a.1.1, 26.6.0.a.1, 52.12.0-26.a.1.3
2704.c1 2704.c \( 2^{4} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.695310732$ $[0, -1, 0, -4, -1]$ \(y^2=x^3-x^2-4x-1\) 2.2.0.a.1, 26.6.0.a.1, 52.12.0-26.a.1.2
2704.d1 2704.d \( 2^{4} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.388618021$ $[0, -1, 0, -2760, 59344]$ \(y^2=x^3-x^2-2760x+59344\) 104.2.0.?
2704.e1 2704.e \( 2^{4} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.301747619$ $[0, -1, 0, -732, -5045]$ \(y^2=x^3-x^2-732x-5045\) 2.2.0.a.1, 4.4.0-2.a.1.1, 26.6.0.a.1, 52.12.0-26.a.1.4
2704.f1 2704.f \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -1242544, 533523392]$ \(y^2=x^3-x^2-1242544x+533523392\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.5, 72.24.0.?, 104.2.0.?, $\ldots$
2704.f2 2704.f \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -12224, 1040896]$ \(y^2=x^3-x^2-12224x+1040896\) 3.12.0.a.1, 24.24.0-3.a.1.3, 104.2.0.?, 117.36.0.?, 156.24.0.?, $\ldots$
2704.f3 2704.f \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 1296, -29888]$ \(y^2=x^3-x^2+1296x-29888\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.6, 72.24.0.?, 104.2.0.?, $\ldots$
2704.g1 2704.g \( 2^{4} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -676, 6591]$ \(y^2=x^3-676x+6591\) 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.4, 26.6.0.b.1, 52.24.0.e.1, $\ldots$
2704.g2 2704.g \( 2^{4} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 169, 21970]$ \(y^2=x^3+169x+21970\) 2.3.0.a.1, 4.6.0.a.1, 8.12.0-4.a.1.2, 52.12.0.d.1, 104.48.0.?
2704.h1 2704.h \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1052363, 415676794]$ \(y^2=x^3-1052363x+415676794\) 4.16.0-4.b.1.1, 7.8.0.a.1, 14.16.0-7.a.1.1, 28.256.5-28.b.1.3, 91.24.0.?, $\ldots$
2704.h2 2704.h \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 2197, -171366]$ \(y^2=x^3+2197x-171366\) 4.16.0-4.b.1.1, 7.8.0.a.1, 14.16.0-7.a.1.2, 28.256.5-28.b.2.3, 91.24.0.?, $\ldots$
2704.i1 2704.i \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -6227, 189202]$ \(y^2=x^3-6227x+189202\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 52.16.0-4.b.1.1, 91.24.0.?, $\ldots$
2704.i2 2704.i \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 13, -78]$ \(y^2=x^3+13x-78\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 52.16.0-4.b.1.1, 91.24.0.?, $\ldots$
2704.j1 2704.j \( 2^{4} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.034495193$ $[0, 1, 0, -5152, -146444]$ \(y^2=x^3+x^2-5152x-146444\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$
2704.j2 2704.j \( 2^{4} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.606899038$ $[0, 1, 0, 48, 404]$ \(y^2=x^3+x^2+48x+404\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$
2704.k1 2704.k \( 2^{4} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $6.410813447$ $[0, 1, 0, -870744, -318254572]$ \(y^2=x^3+x^2-870744x-318254572\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$
2704.k2 2704.k \( 2^{4} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.282162689$ $[0, 1, 0, 8056, 855284]$ \(y^2=x^3+x^2+8056x+855284\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$
2704.l1 2704.l \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -88612, 10182444]$ \(y^2=x^3-x^2-88612x+10182444\) 3.4.0.a.1, 4.2.0.a.1, 6.8.0-3.a.1.2, 8.4.0-4.a.1.1, 9.12.0.b.1, $\ldots$
2704.l2 2704.l \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -732, 23516]$ \(y^2=x^3-x^2-732x+23516\) 3.4.0.a.1, 4.2.0.a.1, 6.8.0-3.a.1.1, 8.4.0-4.a.1.1, 9.12.0.b.1, $\ldots$
2704.m1 2704.m \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -524, 4796]$ \(y^2=x^3-x^2-524x+4796\) 3.4.0.a.1, 4.2.0.a.1, 9.12.0.b.1, 12.8.0.a.1, 24.16.0.b.2, $\ldots$
2704.m2 2704.m \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -4, 12]$ \(y^2=x^3-x^2-4x+12\) 3.4.0.a.1, 4.2.0.a.1, 9.12.0.b.1, 12.8.0.a.1, 24.16.0.b.1, $\ldots$
2704.n1 2704.n \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -575107, 184183298]$ \(y^2=x^3-575107x+184183298\) 7.24.0.a.2, 56.48.0-7.a.2.5, 104.2.0.?, 364.48.0.?, 728.96.2.?
2704.n2 2704.n \( 2^{4} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -7267, -364702]$ \(y^2=x^3-7267x-364702\) 7.24.0.a.1, 56.48.0-7.a.1.5, 104.2.0.?, 364.48.0.?, 728.96.2.?
  displayed columns for results