Properties

Label 2700.b
Number of curves $2$
Conductor $2700$
CM \(\Q(\sqrt{-3}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("b1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2700.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
2700.b1 2700p2 \([0, 0, 0, 0, -13500]\) \(0\) \(-78732000000\) \([]\) \(2592\) \(0.76966\)   \(-3\)
2700.b2 2700p1 \([0, 0, 0, 0, 500]\) \(0\) \(-108000000\) \([]\) \(864\) \(0.22035\) \(\Gamma_0(N)\)-optimal \(-3\)

Rank

sage: E.rank()
 

The elliptic curves in class 2700.b have rank \(1\).

Complex multiplication

Each elliptic curve in class 2700.b has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).

Modular form 2700.2.a.b

sage: E.q_eigenform(10)
 
\(q - 5 q^{7} + 7 q^{13} - q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.