Minimal Weierstrass equation
\(y^2+y=x^3-30x+63\)
Mordell-Weil group structure
\(\Z/{3}\Z\)
Torsion generators
\( \left(3, 0\right) \)
Integral points
\( \left(3, 0\right) \), \( \left(3, -1\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 27 \) | = | \(3^{3}\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-243 \) | = | \(-1 \cdot 3^{5} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -12288000 \) | = | \(-1 \cdot 2^{15} \cdot 3 \cdot 5^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z[(1+\sqrt{-27})/2]\) | (potential complex multiplication) | |
Sato-Tate group: | $N(\mathrm{U}(1))$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(0\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(5.2999162508563498719410684989\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 1 \) = \( 1 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(3\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 9 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 3 |
Special L-value
\( L(E,1) \) ≈ \( 0.58887958342848331910456316654932546833 \)
Local data
This elliptic curve is semistable. There is only one prime of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(3\) | \(1\) | \(IV\) | Additive | -1 | 3 | 5 | 0 |
Galois representations
The mod \( p \) Galois representation has maximal image for all primes \( p < 1000 \) except those listed.
prime | Image of Galois representation |
---|---|
\(3\) | B.1.1 |
For all other primes \(p\), the image is the normalizer of a split Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=+1\) or the normalizer of a nonsplit Cartan subgroup if \(\left(\frac{ -3 }{p}\right)=-1\).
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
$p$ | 2 | 3 |
---|---|---|
Reduction type | ss | add |
$\lambda$-invariant(s) | 0,5 | - |
$\mu$-invariant(s) | 0,0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
3, 9 and 27.
Its isogeny class 27.a
consists of 4 curves linked by isogenies of
degrees dividing 27.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.108.1 | \(\Z/6\Z\) | Not in database |
$3$ | \(\Q(\zeta_{9})^+\) | \(\Z/9\Z\) | 3.3.81.1-27.1-a3 |
$6$ | 6.0.34992.1 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$6$ | 6.0.177147.2 | \(\Z/3\Z \times \Z/3\Z\) | Not in database |
$6$ | 6.0.177147.1 | \(\Z/9\Z\) | Not in database |
$9$ | \(\Q(\zeta_{27})^+\) | \(\Z/27\Z\) | Not in database |
$9$ | 9.3.918330048.1 | \(\Z/18\Z\) | Not in database |
$12$ | 12.2.15045919506432.1 | \(\Z/12\Z\) | Not in database |
$12$ | 12.0.241162079949.1 | \(\Z/21\Z\) | Not in database |
$18$ | 18.0.4052555153018976267.1 | \(\Z/3\Z \times \Z/9\Z\) | Not in database |
$18$ | 18.0.2954312706550833698643.2 | \(\Z/27\Z\) | Not in database |
$18$ | 18.0.1844362878529525198848.1 | \(\Z/6\Z \times \Z/6\Z\) | Not in database |
$18$ | 18.0.1844362878529525198848.2 | \(\Z/2\Z \times \Z/18\Z\) | Not in database |
$18$ | 18.0.2529990231179046912.1 | \(\Z/2\Z \times \Z/18\Z\) | Not in database |
We only show fields where the torsion growth is primitive.