Show commands for:
SageMath
sage: E = EllipticCurve("ca1")
sage: E.isogeny_class()
Elliptic curves in class 26928ca
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
26928.e1 | 26928ca1 | [0, 0, 0, -28227, -1824190] | [2] | 73728 | \(\Gamma_0(N)\)-optimal |
26928.e2 | 26928ca2 | [0, 0, 0, -22467, -2590270] | [2] | 147456 |
Rank
sage: E.rank()
The elliptic curves in class 26928ca have rank \(1\).
Complex multiplication
The elliptic curves in class 26928ca do not have complex multiplication.Modular form 26928.2.a.ca
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.