Show commands for:
SageMath
sage: E = EllipticCurve("bd1")
sage: E.isogeny_class()
Elliptic curves in class 26928bd
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
26928.r2 | 26928bd1 | [0, 0, 0, -1731, 22466] | [2] | 18432 | \(\Gamma_0(N)\)-optimal |
26928.r1 | 26928bd2 | [0, 0, 0, -26211, 1633250] | [2] | 36864 |
Rank
sage: E.rank()
The elliptic curves in class 26928bd have rank \(1\).
Complex multiplication
The elliptic curves in class 26928bd do not have complex multiplication.Modular form 26928.2.a.bd
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.