Properties

Label 26928.bw
Number of curves $2$
Conductor $26928$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("bw1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 26928.bw

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
26928.bw1 26928bj1 [0, 0, 0, -130179, 17935490] [2] 215040 \(\Gamma_0(N)\)-optimal
26928.bw2 26928bj2 [0, 0, 0, -38019, 42837122] [2] 430080  

Rank

sage: E.rank()
 

The elliptic curves in class 26928.bw have rank \(0\).

Complex multiplication

The elliptic curves in class 26928.bw do not have complex multiplication.

Modular form 26928.2.a.bw

sage: E.q_eigenform(10)
 
\( q + 2q^{5} + 4q^{7} - q^{11} - 4q^{13} + q^{17} + 8q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.