Properties

Label 266910.ck
Number of curves $8$
Conductor $266910$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ck1")
 
E.isogeny_class()
 

Elliptic curves in class 266910.ck

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
266910.ck1 266910ck8 \([1, 0, 0, -9320773825040, -10952689658836929780]\) \(89552893167104768935326075943640273911752961/1268853961713740548849854852215284980\) \(1268853961713740548849854852215284980\) \([2]\) \(13287555072\) \(6.0675\)  
266910.ck2 266910ck3 \([1, 0, 0, -2178935510140, 1237982811464867600]\) \(1144081181272479239133643526834383042983361/757051842880264964991840000\) \(757051842880264964991840000\) \([8]\) \(3321888768\) \(5.3743\)  
266910.ck3 266910ck6 \([1, 0, 0, -599206392140, -160829690671372800]\) \(23793209304025894275206985511597632711361/2595031464462830007240075021449312400\) \(2595031464462830007240075021449312400\) \([2, 2]\) \(6643777536\) \(5.7209\)  
266910.ck4 266910ck4 \([1, 0, 0, -141433110140, 17771562402147600]\) \(312879412318855009716463045818793383361/44626411898210828624928814208160000\) \(44626411898210828624928814208160000\) \([2, 4]\) \(3321888768\) \(5.3743\)  
266910.ck5 266910ck2 \([1, 0, 0, -136184310140, 19343222133507600]\) \(279321867933339260687315798724918183361/7185070196198556975129600000000\) \(7185070196198556975129600000000\) \([2, 8]\) \(1660944384\) \(5.0278\)  
266910.ck6 266910ck1 \([1, 0, 0, -8184310140, 326543733507600]\) \(-60627540058019895893705412918183361/10979320318525440000000000000000\) \(-10979320318525440000000000000000\) \([8]\) \(830472192\) \(4.6812\) \(\Gamma_0(N)\)-optimal
266910.ck7 266910ck5 \([1, 0, 0, 232359371860, 95786613663828000]\) \(1387408316478144028202421750997946744639/4766529283100579070606788945040992400\) \(-4766529283100579070606788945040992400\) \([4]\) \(6643777536\) \(5.7209\)  
266910.ck8 266910ck7 \([1, 0, 0, 797988528760, -799448088117993420]\) \(56197067952339694092756408383570499642239/308620147391001134944081878878405640180\) \(-308620147391001134944081878878405640180\) \([2]\) \(13287555072\) \(6.0675\)  

Rank

sage: E.rank()
 

The elliptic curves in class 266910.ck have rank \(1\).

Complex multiplication

The elliptic curves in class 266910.ck do not have complex multiplication.

Modular form 266910.2.a.ck

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} - q^{7} + q^{8} + q^{9} + q^{10} - 4 q^{11} + q^{12} - 2 q^{13} - q^{14} + q^{15} + q^{16} + 2 q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 16 & 2 & 4 & 8 & 16 & 8 & 4 \\ 16 & 1 & 8 & 4 & 2 & 4 & 8 & 16 \\ 2 & 8 & 1 & 2 & 4 & 8 & 4 & 2 \\ 4 & 4 & 2 & 1 & 2 & 4 & 2 & 4 \\ 8 & 2 & 4 & 2 & 1 & 2 & 4 & 8 \\ 16 & 4 & 8 & 4 & 2 & 1 & 8 & 16 \\ 8 & 8 & 4 & 2 & 4 & 8 & 1 & 8 \\ 4 & 16 & 2 & 4 & 8 & 16 & 8 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.