Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
266910.a1 |
266910a1 |
266910.a |
266910a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{20} \cdot 3^{4} \cdot 5^{2} \cdot 7^{6} \cdot 31^{4} \cdot 41 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$820$ |
$12$ |
$0$ |
$4.995596269$ |
$1$ |
|
$11$ |
$30720000$ |
$2.921131$ |
$30367592771824568684570329/9458969235696097689600$ |
$0.96182$ |
$4.69604$ |
$[1, 1, 0, -6499733, -4336807827]$ |
\(y^2+xy=x^3+x^2-6499733x-4336807827\) |
2.3.0.a.1, 20.6.0.b.1, 82.6.0.?, 820.12.0.? |
$[(-881, 27023), (-1567, 45545)]$ |
266910.a2 |
266910a2 |
266910.a |
266910a |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{10} \cdot 3^{8} \cdot 5 \cdot 7^{12} \cdot 31^{2} \cdot 41^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$820$ |
$12$ |
$0$ |
$19.98238507$ |
$1$ |
|
$6$ |
$61440000$ |
$3.267704$ |
$655984811065821059595852071/751116980200103299077120$ |
$0.97638$ |
$4.94196$ |
$[1, 1, 0, 18101867, -29317272467]$ |
\(y^2+xy=x^3+x^2+18101867x-29317272467\) |
2.3.0.a.1, 20.6.0.a.1, 164.6.0.?, 820.12.0.? |
$[(2281, 153286), (10071, 1078738)]$ |
266910.b1 |
266910b3 |
266910.b |
266910b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2 \cdot 3^{52} \cdot 5 \cdot 7^{3} \cdot 31^{2} \cdot 41^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.8 |
2B |
$840$ |
$48$ |
$0$ |
$118.5692205$ |
$1$ |
|
$0$ |
$2891366400$ |
$5.319832$ |
$62115709551155099885688686547028689529/35800613297574796348602366283153830$ |
$1.05789$ |
$6.96474$ |
$[1, 1, 0, -82507338783, 581267397537783]$ |
\(y^2+xy=x^3+x^2-82507338783x+581267397537783\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 24.24.0-24.bb.1.16, 140.12.0.?, $\ldots$ |
$[(2571879774309801093099938683941778688453469395557759/67372616075776545021227, 112582335700456545251672772604958766818586177701361827063939704497629137082954/67372616075776545021227)]$ |
266910.b2 |
266910b2 |
266910.b |
266910b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{2} \cdot 3^{26} \cdot 5^{2} \cdot 7^{6} \cdot 31^{4} \cdot 41^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.1 |
2Cs |
$840$ |
$48$ |
$0$ |
$59.28461026$ |
$1$ |
|
$2$ |
$1445683200$ |
$4.973259$ |
$18202265039553833582501810393995307929/78041043001608625052076087260100$ |
$1.02153$ |
$6.86650$ |
$[1, 1, 0, -54802525633, -4919672859385727]$ |
\(y^2+xy=x^3+x^2-54802525633x-4919672859385727\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.a.1.3, 140.12.0.?, $\ldots$ |
$[(142216453270907449456000824/15954591071, 1512227055744059935057223770566297507703/15954591071)]$ |
266910.b3 |
266910b1 |
266910.b |
266910b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{4} \cdot 3^{13} \cdot 5 \cdot 7^{3} \cdot 31^{2} \cdot 41^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.12 |
2B |
$840$ |
$48$ |
$0$ |
$118.5692205$ |
$1$ |
|
$1$ |
$722841600$ |
$4.626686$ |
$18146009720380860251064220734822057049/335702565189818626927896720$ |
$1.05366$ |
$6.86625$ |
$[1, 1, 0, -54746010413, -4930362249823923]$ |
\(y^2+xy=x^3+x^2-54746010413x-4930362249823923\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.2, 24.24.0-24.bb.1.2, $\ldots$ |
$[(4216994576381522942373404727225575640375642178055398/122288892085233204768313, 82639133909582052140849052111165356284226102203064468598752786507004861136359/122288892085233204768313)]$ |
266910.b4 |
266910b4 |
266910.b |
266910b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2 \cdot 3^{13} \cdot 5^{4} \cdot 7^{12} \cdot 31^{8} \cdot 41^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.7 |
2B |
$840$ |
$48$ |
$0$ |
$118.5692205$ |
$1$ |
|
$0$ |
$2891366400$ |
$5.319832$ |
$-2428224400281776712700960036418330809/39547958399359027848197915136603750$ |
$1.03756$ |
$6.97517$ |
$[1, 1, 0, -28001956003, -9736490997960293]$ |
\(y^2+xy=x^3+x^2-28001956003x-9736490997960293\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 12.12.0-4.c.1.1, 24.24.0-24.v.1.4, $\ldots$ |
$[(12262814378027692921686812946759329542980574747935861/149196729807883296593051, 1250689162472066207498678675234141160812064052487056823756472181371866011879282/149196729807883296593051)]$ |
266910.c1 |
266910c2 |
266910.c |
266910c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{2} \cdot 3^{4} \cdot 5 \cdot 7^{4} \cdot 31^{2} \cdot 41 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$25420$ |
$12$ |
$0$ |
$1.693332914$ |
$1$ |
|
$6$ |
$540672$ |
$0.937268$ |
$7558269224026249/153254917620$ |
$0.99214$ |
$2.92616$ |
$[1, 1, 0, -4088, -100548]$ |
\(y^2+xy=x^3+x^2-4088x-100548\) |
2.3.0.a.1, 124.6.0.?, 410.6.0.?, 25420.12.0.? |
$[(-41, 5)]$ |
266910.c2 |
266910c1 |
266910.c |
266910c |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 31 \cdot 41^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$25420$ |
$12$ |
$0$ |
$0.846666457$ |
$1$ |
|
$9$ |
$270336$ |
$0.590694$ |
$167284151/9192380400$ |
$0.89389$ |
$2.43275$ |
$[1, 1, 0, 12, -4608]$ |
\(y^2+xy=x^3+x^2+12x-4608\) |
2.3.0.a.1, 62.6.0.b.1, 820.6.0.?, 25420.12.0.? |
$[(57, 402)]$ |
266910.d1 |
266910d1 |
266910.d |
266910d |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{11} \cdot 3^{2} \cdot 5^{5} \cdot 7 \cdot 31 \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$355880$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$436480$ |
$0.958244$ |
$-1478777575664089/512467200000$ |
$0.84611$ |
$2.83315$ |
$[1, 1, 0, -2373, -57267]$ |
\(y^2+xy=x^3+x^2-2373x-57267\) |
355880.2.0.? |
$[]$ |
266910.e1 |
266910e1 |
266910.e |
266910e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{7} \cdot 3^{14} \cdot 5 \cdot 7 \cdot 31^{5} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$355880$ |
$2$ |
$0$ |
$9.207248759$ |
$1$ |
|
$0$ |
$12387200$ |
$2.411880$ |
$41748955261961729646311/25151732528841313920$ |
$0.95991$ |
$4.16866$ |
$[1, 1, 0, 722727, 48207717]$ |
\(y^2+xy=x^3+x^2+722727x+48207717\) |
355880.2.0.? |
$[(79011/22, 138197835/22)]$ |
266910.f1 |
266910f1 |
266910.f |
266910f |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{3} \cdot 3 \cdot 5^{3} \cdot 7 \cdot 31 \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1067640$ |
$2$ |
$0$ |
$2.410688725$ |
$1$ |
|
$2$ |
$100800$ |
$0.142694$ |
$141339344329/26691000$ |
$0.76202$ |
$2.05483$ |
$[1, 1, 0, -108, 312]$ |
\(y^2+xy=x^3+x^2-108x+312\) |
1067640.2.0.? |
$[(-1, 21)]$ |
266910.g1 |
266910g1 |
266910.g |
266910g |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{21} \cdot 3^{2} \cdot 5^{11} \cdot 7^{3} \cdot 31 \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$355880$ |
$2$ |
$0$ |
$6.282998322$ |
$1$ |
|
$2$ |
$16055424$ |
$2.642693$ |
$653487346048372282018151/401774284800000000000$ |
$0.96642$ |
$4.38880$ |
$[1, 1, 0, 1807887, -232970283]$ |
\(y^2+xy=x^3+x^2+1807887x-232970283\) |
355880.2.0.? |
$[(2613, 148161)]$ |
266910.h1 |
266910h2 |
266910.h |
266910h |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{2} \cdot 3^{2} \cdot 5^{10} \cdot 7^{2} \cdot 31 \cdot 41^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$76260$ |
$12$ |
$0$ |
$0.542082241$ |
$1$ |
|
$28$ |
$1648640$ |
$1.559492$ |
$1606056445612324441/897693398437500$ |
$0.91650$ |
$3.35506$ |
$[1, 1, 0, -24397, 260881]$ |
\(y^2+xy=x^3+x^2-24397x+260881\) |
2.3.0.a.1, 124.6.0.?, 2460.6.0.?, 76260.12.0.? |
$[(267, 3454), (-20, 871)]$ |
266910.h2 |
266910h1 |
266910.h |
266910h |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{4} \cdot 3 \cdot 5^{5} \cdot 7^{4} \cdot 31^{2} \cdot 41 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$76260$ |
$12$ |
$0$ |
$2.168328964$ |
$1$ |
|
$13$ |
$824320$ |
$1.212919$ |
$23679214783960679/14190270150000$ |
$0.89331$ |
$3.01756$ |
$[1, 1, 0, 5983, 36069]$ |
\(y^2+xy=x^3+x^2+5983x+36069\) |
2.3.0.a.1, 124.6.0.?, 1230.6.0.?, 76260.12.0.? |
$[(43, 591), (25, 437)]$ |
266910.i1 |
266910i2 |
266910.i |
266910i |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2 \cdot 3^{2} \cdot 5^{4} \cdot 7^{4} \cdot 31^{2} \cdot 41^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.6 |
2B |
$10168$ |
$12$ |
$0$ |
$0.916700715$ |
$1$ |
|
$18$ |
$1523712$ |
$1.505747$ |
$22371441369258096361/43635080711250$ |
$0.89788$ |
$3.56587$ |
$[1, 1, 0, -58702, 5440666]$ |
\(y^2+xy=x^3+x^2-58702x+5440666\) |
2.3.0.a.1, 8.6.0.b.1, 5084.6.0.?, 10168.12.0.? |
$[(127, 169), (147, 49)]$ |
266910.i2 |
266910i1 |
266910.i |
266910i |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{2} \cdot 3^{4} \cdot 5^{8} \cdot 7^{2} \cdot 31 \cdot 41 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.6.0.1 |
2B |
$10168$ |
$12$ |
$0$ |
$0.916700715$ |
$1$ |
|
$25$ |
$761856$ |
$1.159172$ |
$-1631405145996361/7882185937500$ |
$0.87059$ |
$2.98235$ |
$[1, 1, 0, -2452, 141916]$ |
\(y^2+xy=x^3+x^2-2452x+141916\) |
2.3.0.a.1, 8.6.0.c.1, 2542.6.0.?, 10168.12.0.? |
$[(57, 409), (-18, 434)]$ |
266910.j1 |
266910j1 |
266910.j |
266910j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{7} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 31 \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$355880$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$370944$ |
$0.779426$ |
$-1134006546020041/22599803520$ |
$0.83815$ |
$2.77706$ |
$[1, 1, 0, -2172, 38736]$ |
\(y^2+xy=x^3+x^2-2172x+38736\) |
355880.2.0.? |
$[]$ |
266910.k1 |
266910k2 |
266910.k |
266910k |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{4} \cdot 31^{6} \cdot 41 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$10168$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$16220160$ |
$2.763855$ |
$1999312564769463150816429241/353835336938350050$ |
$0.96890$ |
$5.03115$ |
$[1, 1, 0, -26245347, -51762864141]$ |
\(y^2+xy=x^3+x^2-26245347x-51762864141\) |
2.3.0.a.1, 124.6.0.?, 328.6.0.?, 10168.12.0.? |
$[]$ |
266910.k2 |
266910k1 |
266910.k |
266910k |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{2} \cdot 3^{2} \cdot 5^{4} \cdot 7^{8} \cdot 31^{3} \cdot 41^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$10168$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$8110080$ |
$2.417282$ |
$-483453481738354778793241/6495605384838097500$ |
$0.94143$ |
$4.36652$ |
$[1, 1, 0, -1635097, -814724591]$ |
\(y^2+xy=x^3+x^2-1635097x-814724591\) |
2.3.0.a.1, 62.6.0.b.1, 328.6.0.?, 10168.12.0.? |
$[]$ |
266910.l1 |
266910l1 |
266910.l |
266910l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{39} \cdot 3 \cdot 5^{3} \cdot 7 \cdot 31 \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1067640$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7918560$ |
$2.334854$ |
$-243623034173330160287401/1834191553560576000$ |
$0.93877$ |
$4.31087$ |
$[1, 1, 0, -1301162, 574437204]$ |
\(y^2+xy=x^3+x^2-1301162x+574437204\) |
1067640.2.0.? |
$[]$ |
266910.m1 |
266910m1 |
266910.m |
266910m |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{13} \cdot 3 \cdot 5^{7} \cdot 7^{3} \cdot 31 \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1067640$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1441440$ |
$1.546085$ |
$208442417964487559/837029760000000$ |
$0.89699$ |
$3.33422$ |
$[1, 1, 0, 12353, -1282619]$ |
\(y^2+xy=x^3+x^2+12353x-1282619\) |
1067640.2.0.? |
$[]$ |
266910.n1 |
266910n1 |
266910.n |
266910n |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{19} \cdot 3^{3} \cdot 5 \cdot 7^{3} \cdot 31 \cdot 41^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1067640$ |
$2$ |
$0$ |
$40.87761710$ |
$1$ |
|
$0$ |
$13296960$ |
$2.624340$ |
$5190898216551767990139241/87192430447928279040$ |
$0.95000$ |
$4.55466$ |
$[1, 1, 0, -3607222, -2599935404]$ |
\(y^2+xy=x^3+x^2-3607222x-2599935404\) |
1067640.2.0.? |
$[(-684133415533822965/26087143, 69579514199214238711065538/26087143)]$ |
266910.o1 |
266910o1 |
266910.o |
266910o |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{13} \cdot 3^{7} \cdot 5^{8} \cdot 7 \cdot 31^{3} \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$213528$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$16773120$ |
$2.554211$ |
$1218478032977162784404761/59836438972800000000$ |
$0.94533$ |
$4.43867$ |
$[1, 1, 0, -2225177, 1221264741]$ |
\(y^2+xy=x^3+x^2-2225177x+1221264741\) |
213528.2.0.? |
$[]$ |
266910.p1 |
266910p1 |
266910.p |
266910p |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2 \cdot 3^{7} \cdot 5^{4} \cdot 7^{3} \cdot 31 \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$213528$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$903168$ |
$1.165068$ |
$242551507266963721/1191786513750$ |
$0.87309$ |
$3.20377$ |
$[1, 1, 0, -12992, -573006]$ |
\(y^2+xy=x^3+x^2-12992x-573006\) |
213528.2.0.? |
$[]$ |
266910.q1 |
266910q1 |
266910.q |
266910q |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{6} \cdot 3^{3} \cdot 5^{11} \cdot 7^{6} \cdot 31 \cdot 41 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$76260$ |
$2$ |
$0$ |
$0.326277862$ |
$1$ |
|
$18$ |
$10568448$ |
$2.496254$ |
$-1704730624724530233363961/12616752290625000000$ |
$0.94595$ |
$4.46656$ |
$[1, 1, 0, -2488727, 1519768341]$ |
\(y^2+xy=x^3+x^2-2488727x+1519768341\) |
76260.2.0.? |
$[(982, 4409), (28438/3, 4244843/3)]$ |
266910.r1 |
266910r1 |
266910.r |
266910r |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{5} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 31 \cdot 41^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$355880$ |
$2$ |
$0$ |
$6.831810005$ |
$1$ |
|
$0$ |
$2064000$ |
$1.673376$ |
$-6034224034719280009/2932422400766880$ |
$0.89797$ |
$3.50979$ |
$[1, 0, 1, -37929, -3859508]$ |
\(y^2+xy+y=x^3-37929x-3859508\) |
355880.2.0.? |
$[(1835/2, 67599/2)]$ |
266910.s1 |
266910s4 |
266910.s |
266910s |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{18} \cdot 3^{4} \cdot 5^{3} \cdot 7^{12} \cdot 31^{2} \cdot 41 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
2.3.0.1, 3.8.0.2 |
2B, 3B.1.2 |
$76260$ |
$96$ |
$1$ |
$8.295418610$ |
$1$ |
|
$0$ |
$314523648$ |
$4.131714$ |
$40672130393189747907377761464434089/1447500353291376427008000$ |
$1.00998$ |
$6.37799$ |
$[1, 0, 1, -7164585499, -233418791183578]$ |
\(y^2+xy+y=x^3-7164585499x-233418791183578\) |
2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 124.6.0.?, 372.48.0.?, $\ldots$ |
$[(15244759/5, 58877192488/5)]$ |
266910.s2 |
266910s3 |
266910.s |
266910s |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{36} \cdot 3^{2} \cdot 5^{6} \cdot 7^{6} \cdot 31 \cdot 41^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
2.3.0.1, 3.8.0.2 |
2B, 3B.1.2 |
$76260$ |
$96$ |
$1$ |
$16.59083722$ |
$1$ |
|
$1$ |
$157261824$ |
$3.785137$ |
$-9887131290045259599242178674089/59246135393831092224000000$ |
$0.99174$ |
$5.71276$ |
$[1, 0, 1, -447145499, -3658160399578]$ |
\(y^2+xy+y=x^3-447145499x-3658160399578\) |
2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 62.6.0.b.1, 186.48.0.?, $\ldots$ |
$[(27292904661/884, 3324457975630661/884)]$ |
266910.s3 |
266910s2 |
266910.s |
266910s |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{6} \cdot 3^{12} \cdot 5 \cdot 7^{4} \cdot 31^{6} \cdot 41^{3} \) |
$1$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$76260$ |
$96$ |
$1$ |
$2.765139536$ |
$1$ |
|
$10$ |
$104841216$ |
$3.582405$ |
$96188000738505810586460092729/24975772405388013912333120$ |
$0.98416$ |
$5.34117$ |
$[1, 0, 1, -95455084, -266538214294]$ |
\(y^2+xy+y=x^3-95455084x-266538214294\) |
2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 124.6.0.?, 372.48.0.?, $\ldots$ |
$[(-7175, 224927)]$ |
266910.s4 |
266910s1 |
266910.s |
266910s |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{12} \cdot 3^{6} \cdot 5^{2} \cdot 7^{2} \cdot 31^{3} \cdot 41^{6} \) |
$1$ |
$\Z/6\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2, 3$ |
2.3.0.1, 3.8.0.1 |
2B, 3B.1.1 |
$76260$ |
$96$ |
$1$ |
$5.530279073$ |
$1$ |
|
$5$ |
$52420608$ |
$3.235832$ |
$359863578662133744768297671/517620880056518958182400$ |
$0.97501$ |
$4.92558$ |
$[1, 0, 1, 14818516, -26759298454]$ |
\(y^2+xy+y=x^3+14818516x-26759298454\) |
2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 62.6.0.b.1, 186.48.0.?, $\ldots$ |
$[(133293/4, 52310347/4)]$ |
266910.t1 |
266910t2 |
266910.t |
266910t |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{4} \cdot 3^{4} \cdot 5 \cdot 7^{4} \cdot 31^{2} \cdot 41 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$25420$ |
$12$ |
$0$ |
$0.509155988$ |
$1$ |
|
$8$ |
$622592$ |
$1.177273$ |
$563578397652718729/613019670480$ |
$0.87796$ |
$3.27124$ |
$[1, 0, 1, -17209, 866636]$ |
\(y^2+xy+y=x^3-17209x+866636\) |
2.3.0.a.1, 124.6.0.?, 410.6.0.?, 25420.12.0.? |
$[(79, 2)]$ |
266910.t2 |
266910t1 |
266910.t |
266910t |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 31 \cdot 41^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$25420$ |
$12$ |
$0$ |
$1.018311977$ |
$1$ |
|
$7$ |
$311296$ |
$0.830699$ |
$-58451728309129/147078086400$ |
$0.96838$ |
$2.67122$ |
$[1, 0, 1, -809, 20396]$ |
\(y^2+xy+y=x^3-809x+20396\) |
2.3.0.a.1, 62.6.0.b.1, 820.6.0.?, 25420.12.0.? |
$[(-21, 178)]$ |
266910.u1 |
266910u4 |
266910.u |
266910u |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{9} \cdot 3^{4} \cdot 5 \cdot 7^{4} \cdot 31^{4} \cdot 41^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.7 |
2B |
$152520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$27426816$ |
$3.025433$ |
$4004970760625951407261545289/1299269807663844764160$ |
$1.00787$ |
$5.08676$ |
$[1, 0, 1, -33084549, -73228564304]$ |
\(y^2+xy+y=x^3-33084549x-73228564304\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 20.12.0-4.c.1.1, 40.24.0-40.v.1.4, $\ldots$ |
$[]$ |
266910.u2 |
266910u2 |
266910.u |
266910u |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{18} \cdot 3^{2} \cdot 5^{2} \cdot 7^{8} \cdot 31^{2} \cdot 41^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.1 |
2Cs |
$152520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$13713408$ |
$2.678860$ |
$1438455233808953016374089/549285154194515558400$ |
$0.95396$ |
$4.45195$ |
$[1, 0, 1, -2351749, -809794384]$ |
\(y^2+xy+y=x^3-2351749x-809794384\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 20.12.0-2.a.1.1, 40.24.0-40.a.1.3, 15252.12.0.?, $\ldots$ |
$[]$ |
266910.u3 |
266910u1 |
266910.u |
266910u |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{36} \cdot 3 \cdot 5 \cdot 7^{4} \cdot 31 \cdot 41 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.12 |
2B |
$152520$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$6856704$ |
$2.332283$ |
$124770408209984364270409/3145638514356387840$ |
$0.93645$ |
$4.25628$ |
$[1, 0, 1, -1041029, 399738032]$ |
\(y^2+xy+y=x^3-1041029x+399738032\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 20.12.0-4.c.1.2, 40.24.0-40.bb.1.9, $\ldots$ |
$[]$ |
266910.u4 |
266910u3 |
266910.u |
266910u |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{9} \cdot 3 \cdot 5^{4} \cdot 7^{16} \cdot 31 \cdot 41 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.8 |
2B |
$152520$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$27426816$ |
$3.025433$ |
$44987924177142229584923831/40549492563804356160000$ |
$0.96883$ |
$4.72749$ |
$[1, 0, 1, 7409531, -5795856208]$ |
\(y^2+xy+y=x^3+7409531x-5795856208\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 40.24.0-40.bb.1.14, 15252.12.0.?, $\ldots$ |
$[]$ |
266910.v1 |
266910v1 |
266910.v |
266910v |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{3} \cdot 3^{15} \cdot 5 \cdot 7^{3} \cdot 31 \cdot 41 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1067640$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$1179360$ |
$1.466835$ |
$-470056203380406889/250217962134840$ |
$0.88473$ |
$3.30892$ |
$[1, 0, 1, -16199, 1098146]$ |
\(y^2+xy+y=x^3-16199x+1098146\) |
3.8.0-3.a.1.2, 1067640.16.0.? |
$[]$ |
266910.v2 |
266910v2 |
266910.v |
266910v |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{9} \cdot 3^{5} \cdot 5^{3} \cdot 7 \cdot 31^{3} \cdot 41^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1067640$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3538080$ |
$2.016140$ |
$234035413953867370151/223522342029504000$ |
$0.92287$ |
$3.75376$ |
$[1, 0, 1, 128386, -14268688]$ |
\(y^2+xy+y=x^3+128386x-14268688\) |
3.8.0-3.a.1.1, 1067640.16.0.? |
$[]$ |
266910.w1 |
266910w1 |
266910.w |
266910w |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{9} \cdot 3^{7} \cdot 5^{13} \cdot 7 \cdot 31 \cdot 41 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$1067640$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11714976$ |
$2.598183$ |
$-17249572672897384764351289/12161086875000000000$ |
$0.95389$ |
$4.65087$ |
$[1, 0, 1, -5382924, 4809493066]$ |
\(y^2+xy+y=x^3-5382924x+4809493066\) |
1067640.2.0.? |
$[]$ |
266910.x1 |
266910x1 |
266910.x |
266910x |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{11} \cdot 3 \cdot 5^{6} \cdot 7^{5} \cdot 31 \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$213528$ |
$2$ |
$0$ |
$1.555173294$ |
$1$ |
|
$2$ |
$2365440$ |
$1.628159$ |
$3640388064687585289/2050722912000000$ |
$0.92315$ |
$3.42055$ |
$[1, 0, 1, -32049, 357316]$ |
\(y^2+xy+y=x^3-32049x+357316\) |
213528.2.0.? |
$[(-152, 1388)]$ |
266910.y1 |
266910y1 |
266910.y |
266910y |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{13} \cdot 7^{2} \cdot 31^{5} \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$76260$ |
$2$ |
$0$ |
$0.128429627$ |
$1$ |
|
$12$ |
$152006400$ |
$3.891640$ |
$234077488839355436580388877639/1415108408097746250000000000$ |
$1.00000$ |
$5.59207$ |
$[1, 0, 1, 128394172, -1721077792702]$ |
\(y^2+xy+y=x^3+128394172x-1721077792702\) |
76260.2.0.? |
$[(138849, 51824575)]$ |
266910.z1 |
266910z2 |
266910.z |
266910z |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{2} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 31^{6} \cdot 41 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$177940$ |
$12$ |
$0$ |
$4.726699890$ |
$1$ |
|
$2$ |
$5013504$ |
$2.194878$ |
$369133240366174973928121/20219162110762860$ |
$0.94022$ |
$4.34309$ |
$[1, 0, 1, -1494468, 703040518]$ |
\(y^2+xy+y=x^3-1494468x+703040518\) |
2.3.0.a.1, 124.6.0.?, 5740.6.0.?, 177940.12.0.? |
$[(812, 4602)]$ |
266910.z2 |
266910z1 |
266910.z |
266910z |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{6} \cdot 31^{3} \cdot 41^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$177940$ |
$12$ |
$0$ |
$2.363349945$ |
$1$ |
|
$5$ |
$2506752$ |
$1.848303$ |
$-75796578097694044921/21210140032124400$ |
$0.90817$ |
$3.69510$ |
$[1, 0, 1, -88168, 12265958]$ |
\(y^2+xy+y=x^3-88168x+12265958\) |
2.3.0.a.1, 62.6.0.b.1, 5740.6.0.?, 177940.12.0.? |
$[(-8, 3605)]$ |
266910.ba1 |
266910ba1 |
266910.ba |
266910ba |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{5} \cdot 3^{15} \cdot 5^{10} \cdot 7^{3} \cdot 31 \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$213528$ |
$2$ |
$0$ |
$0.660210001$ |
$1$ |
|
$4$ |
$23904000$ |
$2.886986$ |
$127421379511466308535778841/1954827829178437500000$ |
$0.96064$ |
$4.81082$ |
$[1, 0, 1, -10483498, -12891474244]$ |
\(y^2+xy+y=x^3-10483498x-12891474244\) |
213528.2.0.? |
$[(-2030, 6077)]$ |
266910.bb1 |
266910bb2 |
266910.bb |
266910bb |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{3} \cdot 7 \cdot 31^{2} \cdot 41 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$177940$ |
$12$ |
$0$ |
$6.339655101$ |
$1$ |
|
$2$ |
$3735552$ |
$2.051243$ |
$3172875997879441949994361/44680734000$ |
$0.94804$ |
$4.51526$ |
$[1, 0, 1, -3061328, -2061894994]$ |
\(y^2+xy+y=x^3-3061328x-2061894994\) |
2.3.0.a.1, 124.6.0.?, 5740.6.0.?, 177940.12.0.? |
$[(3960, 216922)]$ |
266910.bb2 |
266910bb1 |
266910.bb |
266910bb |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{6} \cdot 7^{2} \cdot 31 \cdot 41^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$177940$ |
$12$ |
$0$ |
$3.169827550$ |
$1$ |
|
$5$ |
$1867776$ |
$1.704672$ |
$-774561746167181514361/91923804000000$ |
$0.91483$ |
$3.84957$ |
$[1, 0, 1, -191328, -32230994]$ |
\(y^2+xy+y=x^3-191328x-32230994\) |
2.3.0.a.1, 62.6.0.b.1, 5740.6.0.?, 177940.12.0.? |
$[(680, 11997)]$ |
266910.bc1 |
266910bc2 |
266910.bc |
266910bc |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( 2^{5} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31^{2} \cdot 41^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$1240$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1474560$ |
$1.617712$ |
$3638343829368202921/1724486886087840$ |
$0.90441$ |
$3.42050$ |
$[1, 0, 1, -32043, -941834]$ |
\(y^2+xy+y=x^3-32043x-941834\) |
2.3.0.a.1, 40.6.0.b.1, 124.6.0.?, 1240.12.0.? |
$[]$ |
266910.bc2 |
266910bc1 |
266910.bc |
266910bc |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{10} \cdot 3^{2} \cdot 5^{2} \cdot 7^{4} \cdot 31 \cdot 41^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$1240$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$737280$ |
$1.271137$ |
$40551226090625879/28827304934400$ |
$0.88133$ |
$3.06061$ |
$[1, 0, 1, 7157, -110794]$ |
\(y^2+xy+y=x^3+7157x-110794\) |
2.3.0.a.1, 40.6.0.c.1, 62.6.0.b.1, 1240.12.0.? |
$[]$ |
266910.bd1 |
266910bd1 |
266910.bd |
266910bd |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{2} \cdot 3^{7} \cdot 5^{3} \cdot 7^{2} \cdot 31 \cdot 41 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$76260$ |
$2$ |
$0$ |
$0.146250648$ |
$1$ |
|
$28$ |
$607488$ |
$0.884834$ |
$-4895766888629401/68102086500$ |
$0.84836$ |
$2.89331$ |
$[1, 0, 1, -3538, 81656]$ |
\(y^2+xy+y=x^3-3538x+81656\) |
76260.2.0.? |
$[(-5, 317), (30, 37)]$ |
266910.be1 |
266910be1 |
266910.be |
266910be |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) |
\( - 2^{22} \cdot 3^{4} \cdot 5^{5} \cdot 7 \cdot 31 \cdot 41 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$177940$ |
$2$ |
$0$ |
$0.984620315$ |
$1$ |
|
$4$ |
$2196480$ |
$1.752136$ |
$9101562976637452439/9445795430400000$ |
$0.90732$ |
$3.49389$ |
$[1, 0, 1, 43497, -3106502]$ |
\(y^2+xy+y=x^3+43497x-3106502\) |
177940.2.0.? |
$[(1799, 75900)]$ |