Learn more

Refine search


Results (1-50 of 123 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
266910.a1 266910.a 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 22 Z/2Z\Z/2\Z 4.9955962694.995596269 [1,1,0,6499733,4336807827][1, 1, 0, -6499733, -4336807827] y2+xy=x3+x26499733x4336807827y^2+xy=x^3+x^2-6499733x-4336807827 2.3.0.a.1, 20.6.0.b.1, 82.6.0.?, 820.12.0.?
266910.a2 266910.a 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 22 Z/2Z\Z/2\Z 19.9823850719.98238507 [1,1,0,18101867,29317272467][1, 1, 0, 18101867, -29317272467] y2+xy=x3+x2+18101867x29317272467y^2+xy=x^3+x^2+18101867x-29317272467 2.3.0.a.1, 20.6.0.a.1, 164.6.0.?, 820.12.0.?
266910.b1 266910.b 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/2Z\Z/2\Z 118.5692205118.5692205 [1,1,0,82507338783,581267397537783][1, 1, 0, -82507338783, 581267397537783] y2+xy=x3+x282507338783x+581267397537783y^2+xy=x^3+x^2-82507338783x+581267397537783 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 24.24.0-24.bb.1.16, 140.12.0.?, \ldots
266910.b2 266910.b 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 59.2846102659.28461026 [1,1,0,54802525633,4919672859385727][1, 1, 0, -54802525633, -4919672859385727] y2+xy=x3+x254802525633x4919672859385727y^2+xy=x^3+x^2-54802525633x-4919672859385727 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.a.1.3, 140.12.0.?, \ldots
266910.b3 266910.b 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/2Z\Z/2\Z 118.5692205118.5692205 [1,1,0,54746010413,4930362249823923][1, 1, 0, -54746010413, -4930362249823923] y2+xy=x3+x254746010413x4930362249823923y^2+xy=x^3+x^2-54746010413x-4930362249823923 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.2, 24.24.0-24.bb.1.2, \ldots
266910.b4 266910.b 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/2Z\Z/2\Z 118.5692205118.5692205 [1,1,0,28001956003,9736490997960293][1, 1, 0, -28001956003, -9736490997960293] y2+xy=x3+x228001956003x9736490997960293y^2+xy=x^3+x^2-28001956003x-9736490997960293 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 12.12.0-4.c.1.1, 24.24.0-24.v.1.4, \ldots
266910.c1 266910.c 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/2Z\Z/2\Z 1.6933329141.693332914 [1,1,0,4088,100548][1, 1, 0, -4088, -100548] y2+xy=x3+x24088x100548y^2+xy=x^3+x^2-4088x-100548 2.3.0.a.1, 124.6.0.?, 410.6.0.?, 25420.12.0.?
266910.c2 266910.c 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/2Z\Z/2\Z 0.8466664570.846666457 [1,1,0,12,4608][1, 1, 0, 12, -4608] y2+xy=x3+x2+12x4608y^2+xy=x^3+x^2+12x-4608 2.3.0.a.1, 62.6.0.b.1, 820.6.0.?, 25420.12.0.?
266910.d1 266910.d 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 trivial\mathsf{trivial} 11 [1,1,0,2373,57267][1, 1, 0, -2373, -57267] y2+xy=x3+x22373x57267y^2+xy=x^3+x^2-2373x-57267 355880.2.0.?
266910.e1 266910.e 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 trivial\mathsf{trivial} 9.2072487599.207248759 [1,1,0,722727,48207717][1, 1, 0, 722727, 48207717] y2+xy=x3+x2+722727x+48207717y^2+xy=x^3+x^2+722727x+48207717 355880.2.0.?
266910.f1 266910.f 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 trivial\mathsf{trivial} 2.4106887252.410688725 [1,1,0,108,312][1, 1, 0, -108, 312] y2+xy=x3+x2108x+312y^2+xy=x^3+x^2-108x+312 1067640.2.0.?
266910.g1 266910.g 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 trivial\mathsf{trivial} 6.2829983226.282998322 [1,1,0,1807887,232970283][1, 1, 0, 1807887, -232970283] y2+xy=x3+x2+1807887x232970283y^2+xy=x^3+x^2+1807887x-232970283 355880.2.0.?
266910.h1 266910.h 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 22 Z/2Z\Z/2\Z 0.5420822410.542082241 [1,1,0,24397,260881][1, 1, 0, -24397, 260881] y2+xy=x3+x224397x+260881y^2+xy=x^3+x^2-24397x+260881 2.3.0.a.1, 124.6.0.?, 2460.6.0.?, 76260.12.0.?
266910.h2 266910.h 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 22 Z/2Z\Z/2\Z 2.1683289642.168328964 [1,1,0,5983,36069][1, 1, 0, 5983, 36069] y2+xy=x3+x2+5983x+36069y^2+xy=x^3+x^2+5983x+36069 2.3.0.a.1, 124.6.0.?, 1230.6.0.?, 76260.12.0.?
266910.i1 266910.i 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 22 Z/2Z\Z/2\Z 0.9167007150.916700715 [1,1,0,58702,5440666][1, 1, 0, -58702, 5440666] y2+xy=x3+x258702x+5440666y^2+xy=x^3+x^2-58702x+5440666 2.3.0.a.1, 8.6.0.b.1, 5084.6.0.?, 10168.12.0.?
266910.i2 266910.i 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 22 Z/2Z\Z/2\Z 0.9167007150.916700715 [1,1,0,2452,141916][1, 1, 0, -2452, 141916] y2+xy=x3+x22452x+141916y^2+xy=x^3+x^2-2452x+141916 2.3.0.a.1, 8.6.0.c.1, 2542.6.0.?, 10168.12.0.?
266910.j1 266910.j 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 trivial\mathsf{trivial} 11 [1,1,0,2172,38736][1, 1, 0, -2172, 38736] y2+xy=x3+x22172x+38736y^2+xy=x^3+x^2-2172x+38736 355880.2.0.?
266910.k1 266910.k 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,1,0,26245347,51762864141][1, 1, 0, -26245347, -51762864141] y2+xy=x3+x226245347x51762864141y^2+xy=x^3+x^2-26245347x-51762864141 2.3.0.a.1, 124.6.0.?, 328.6.0.?, 10168.12.0.?
266910.k2 266910.k 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,1,0,1635097,814724591][1, 1, 0, -1635097, -814724591] y2+xy=x3+x21635097x814724591y^2+xy=x^3+x^2-1635097x-814724591 2.3.0.a.1, 62.6.0.b.1, 328.6.0.?, 10168.12.0.?
266910.l1 266910.l 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 trivial\mathsf{trivial} 11 [1,1,0,1301162,574437204][1, 1, 0, -1301162, 574437204] y2+xy=x3+x21301162x+574437204y^2+xy=x^3+x^2-1301162x+574437204 1067640.2.0.?
266910.m1 266910.m 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 trivial\mathsf{trivial} 11 [1,1,0,12353,1282619][1, 1, 0, 12353, -1282619] y2+xy=x3+x2+12353x1282619y^2+xy=x^3+x^2+12353x-1282619 1067640.2.0.?
266910.n1 266910.n 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 trivial\mathsf{trivial} 40.8776171040.87761710 [1,1,0,3607222,2599935404][1, 1, 0, -3607222, -2599935404] y2+xy=x3+x23607222x2599935404y^2+xy=x^3+x^2-3607222x-2599935404 1067640.2.0.?
266910.o1 266910.o 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 trivial\mathsf{trivial} 11 [1,1,0,2225177,1221264741][1, 1, 0, -2225177, 1221264741] y2+xy=x3+x22225177x+1221264741y^2+xy=x^3+x^2-2225177x+1221264741 213528.2.0.?
266910.p1 266910.p 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 trivial\mathsf{trivial} 11 [1,1,0,12992,573006][1, 1, 0, -12992, -573006] y2+xy=x3+x212992x573006y^2+xy=x^3+x^2-12992x-573006 213528.2.0.?
266910.q1 266910.q 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 22 trivial\mathsf{trivial} 0.3262778620.326277862 [1,1,0,2488727,1519768341][1, 1, 0, -2488727, 1519768341] y2+xy=x3+x22488727x+1519768341y^2+xy=x^3+x^2-2488727x+1519768341 76260.2.0.?
266910.r1 266910.r 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 trivial\mathsf{trivial} 6.8318100056.831810005 [1,0,1,37929,3859508][1, 0, 1, -37929, -3859508] y2+xy+y=x337929x3859508y^2+xy+y=x^3-37929x-3859508 355880.2.0.?
266910.s1 266910.s 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/2Z\Z/2\Z 8.2954186108.295418610 [1,0,1,7164585499,233418791183578][1, 0, 1, -7164585499, -233418791183578] y2+xy+y=x37164585499x233418791183578y^2+xy+y=x^3-7164585499x-233418791183578 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 124.6.0.?, 372.48.0.?, \ldots
266910.s2 266910.s 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/2Z\Z/2\Z 16.5908372216.59083722 [1,0,1,447145499,3658160399578][1, 0, 1, -447145499, -3658160399578] y2+xy+y=x3447145499x3658160399578y^2+xy+y=x^3-447145499x-3658160399578 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 62.6.0.b.1, 186.48.0.?, \ldots
266910.s3 266910.s 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/6Z\Z/6\Z 2.7651395362.765139536 [1,0,1,95455084,266538214294][1, 0, 1, -95455084, -266538214294] y2+xy+y=x395455084x266538214294y^2+xy+y=x^3-95455084x-266538214294 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 124.6.0.?, 372.48.0.?, \ldots
266910.s4 266910.s 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/6Z\Z/6\Z 5.5302790735.530279073 [1,0,1,14818516,26759298454][1, 0, 1, 14818516, -26759298454] y2+xy+y=x3+14818516x26759298454y^2+xy+y=x^3+14818516x-26759298454 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 62.6.0.b.1, 186.48.0.?, \ldots
266910.t1 266910.t 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/2Z\Z/2\Z 0.5091559880.509155988 [1,0,1,17209,866636][1, 0, 1, -17209, 866636] y2+xy+y=x317209x+866636y^2+xy+y=x^3-17209x+866636 2.3.0.a.1, 124.6.0.?, 410.6.0.?, 25420.12.0.?
266910.t2 266910.t 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/2Z\Z/2\Z 1.0183119771.018311977 [1,0,1,809,20396][1, 0, 1, -809, 20396] y2+xy+y=x3809x+20396y^2+xy+y=x^3-809x+20396 2.3.0.a.1, 62.6.0.b.1, 820.6.0.?, 25420.12.0.?
266910.u1 266910.u 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,0,1,33084549,73228564304][1, 0, 1, -33084549, -73228564304] y2+xy+y=x333084549x73228564304y^2+xy+y=x^3-33084549x-73228564304 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 20.12.0-4.c.1.1, 40.24.0-40.v.1.4, \ldots
266910.u2 266910.u 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,2351749,809794384][1, 0, 1, -2351749, -809794384] y2+xy+y=x32351749x809794384y^2+xy+y=x^3-2351749x-809794384 2.6.0.a.1, 8.12.0-2.a.1.1, 20.12.0-2.a.1.1, 40.24.0-40.a.1.3, 15252.12.0.?, \ldots
266910.u3 266910.u 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,0,1,1041029,399738032][1, 0, 1, -1041029, 399738032] y2+xy+y=x31041029x+399738032y^2+xy+y=x^3-1041029x+399738032 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 20.12.0-4.c.1.2, 40.24.0-40.bb.1.9, \ldots
266910.u4 266910.u 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,0,1,7409531,5795856208][1, 0, 1, 7409531, -5795856208] y2+xy+y=x3+7409531x5795856208y^2+xy+y=x^3+7409531x-5795856208 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 40.24.0-40.bb.1.14, 15252.12.0.?, \ldots
266910.v1 266910.v 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 Z/3Z\Z/3\Z 11 [1,0,1,16199,1098146][1, 0, 1, -16199, 1098146] y2+xy+y=x316199x+1098146y^2+xy+y=x^3-16199x+1098146 3.8.0-3.a.1.2, 1067640.16.0.?
266910.v2 266910.v 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 trivial\mathsf{trivial} 11 [1,0,1,128386,14268688][1, 0, 1, 128386, -14268688] y2+xy+y=x3+128386x14268688y^2+xy+y=x^3+128386x-14268688 3.8.0-3.a.1.1, 1067640.16.0.?
266910.w1 266910.w 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 trivial\mathsf{trivial} 11 [1,0,1,5382924,4809493066][1, 0, 1, -5382924, 4809493066] y2+xy+y=x35382924x+4809493066y^2+xy+y=x^3-5382924x+4809493066 1067640.2.0.?
266910.x1 266910.x 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 trivial\mathsf{trivial} 1.5551732941.555173294 [1,0,1,32049,357316][1, 0, 1, -32049, 357316] y2+xy+y=x332049x+357316y^2+xy+y=x^3-32049x+357316 213528.2.0.?
266910.y1 266910.y 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 trivial\mathsf{trivial} 0.1284296270.128429627 [1,0,1,128394172,1721077792702][1, 0, 1, 128394172, -1721077792702] y2+xy+y=x3+128394172x1721077792702y^2+xy+y=x^3+128394172x-1721077792702 76260.2.0.?
266910.z1 266910.z 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/2Z\Z/2\Z 4.7266998904.726699890 [1,0,1,1494468,703040518][1, 0, 1, -1494468, 703040518] y2+xy+y=x31494468x+703040518y^2+xy+y=x^3-1494468x+703040518 2.3.0.a.1, 124.6.0.?, 5740.6.0.?, 177940.12.0.?
266910.z2 266910.z 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/2Z\Z/2\Z 2.3633499452.363349945 [1,0,1,88168,12265958][1, 0, 1, -88168, 12265958] y2+xy+y=x388168x+12265958y^2+xy+y=x^3-88168x+12265958 2.3.0.a.1, 62.6.0.b.1, 5740.6.0.?, 177940.12.0.?
266910.ba1 266910.ba 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 trivial\mathsf{trivial} 0.6602100010.660210001 [1,0,1,10483498,12891474244][1, 0, 1, -10483498, -12891474244] y2+xy+y=x310483498x12891474244y^2+xy+y=x^3-10483498x-12891474244 213528.2.0.?
266910.bb1 266910.bb 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/2Z\Z/2\Z 6.3396551016.339655101 [1,0,1,3061328,2061894994][1, 0, 1, -3061328, -2061894994] y2+xy+y=x33061328x2061894994y^2+xy+y=x^3-3061328x-2061894994 2.3.0.a.1, 124.6.0.?, 5740.6.0.?, 177940.12.0.?
266910.bb2 266910.bb 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 Z/2Z\Z/2\Z 3.1698275503.169827550 [1,0,1,191328,32230994][1, 0, 1, -191328, -32230994] y2+xy+y=x3191328x32230994y^2+xy+y=x^3-191328x-32230994 2.3.0.a.1, 62.6.0.b.1, 5740.6.0.?, 177940.12.0.?
266910.bc1 266910.bc 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,0,1,32043,941834][1, 0, 1, -32043, -941834] y2+xy+y=x332043x941834y^2+xy+y=x^3-32043x-941834 2.3.0.a.1, 40.6.0.b.1, 124.6.0.?, 1240.12.0.?
266910.bc2 266910.bc 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 00 Z/2Z\Z/2\Z 11 [1,0,1,7157,110794][1, 0, 1, 7157, -110794] y2+xy+y=x3+7157x110794y^2+xy+y=x^3+7157x-110794 2.3.0.a.1, 40.6.0.c.1, 62.6.0.b.1, 1240.12.0.?
266910.bd1 266910.bd 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 22 trivial\mathsf{trivial} 0.1462506480.146250648 [1,0,1,3538,81656][1, 0, 1, -3538, 81656] y2+xy+y=x33538x+81656y^2+xy+y=x^3-3538x+81656 76260.2.0.?
266910.be1 266910.be 23573141 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 11 trivial\mathsf{trivial} 0.9846203150.984620315 [1,0,1,43497,3106502][1, 0, 1, 43497, -3106502] y2+xy+y=x3+43497x3106502y^2+xy+y=x^3+43497x-3106502 177940.2.0.?
Next   displayed columns for results