Learn more

Refine search


Results (1-50 of 123 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
266910.a1 266910.a \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $2$ $\Z/2\Z$ $4.995596269$ $[1, 1, 0, -6499733, -4336807827]$ \(y^2+xy=x^3+x^2-6499733x-4336807827\) 2.3.0.a.1, 20.6.0.b.1, 82.6.0.?, 820.12.0.?
266910.a2 266910.a \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $2$ $\Z/2\Z$ $19.98238507$ $[1, 1, 0, 18101867, -29317272467]$ \(y^2+xy=x^3+x^2+18101867x-29317272467\) 2.3.0.a.1, 20.6.0.a.1, 164.6.0.?, 820.12.0.?
266910.b1 266910.b \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/2\Z$ $118.5692205$ $[1, 1, 0, -82507338783, 581267397537783]$ \(y^2+xy=x^3+x^2-82507338783x+581267397537783\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 24.24.0-24.bb.1.16, 140.12.0.?, $\ldots$
266910.b2 266910.b \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $59.28461026$ $[1, 1, 0, -54802525633, -4919672859385727]$ \(y^2+xy=x^3+x^2-54802525633x-4919672859385727\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.a.1.3, 140.12.0.?, $\ldots$
266910.b3 266910.b \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/2\Z$ $118.5692205$ $[1, 1, 0, -54746010413, -4930362249823923]$ \(y^2+xy=x^3+x^2-54746010413x-4930362249823923\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.2, 24.24.0-24.bb.1.2, $\ldots$
266910.b4 266910.b \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/2\Z$ $118.5692205$ $[1, 1, 0, -28001956003, -9736490997960293]$ \(y^2+xy=x^3+x^2-28001956003x-9736490997960293\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 12.12.0-4.c.1.1, 24.24.0-24.v.1.4, $\ldots$
266910.c1 266910.c \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/2\Z$ $1.693332914$ $[1, 1, 0, -4088, -100548]$ \(y^2+xy=x^3+x^2-4088x-100548\) 2.3.0.a.1, 124.6.0.?, 410.6.0.?, 25420.12.0.?
266910.c2 266910.c \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/2\Z$ $0.846666457$ $[1, 1, 0, 12, -4608]$ \(y^2+xy=x^3+x^2+12x-4608\) 2.3.0.a.1, 62.6.0.b.1, 820.6.0.?, 25420.12.0.?
266910.d1 266910.d \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -2373, -57267]$ \(y^2+xy=x^3+x^2-2373x-57267\) 355880.2.0.?
266910.e1 266910.e \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\mathsf{trivial}$ $9.207248759$ $[1, 1, 0, 722727, 48207717]$ \(y^2+xy=x^3+x^2+722727x+48207717\) 355880.2.0.?
266910.f1 266910.f \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\mathsf{trivial}$ $2.410688725$ $[1, 1, 0, -108, 312]$ \(y^2+xy=x^3+x^2-108x+312\) 1067640.2.0.?
266910.g1 266910.g \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\mathsf{trivial}$ $6.282998322$ $[1, 1, 0, 1807887, -232970283]$ \(y^2+xy=x^3+x^2+1807887x-232970283\) 355880.2.0.?
266910.h1 266910.h \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $2$ $\Z/2\Z$ $0.542082241$ $[1, 1, 0, -24397, 260881]$ \(y^2+xy=x^3+x^2-24397x+260881\) 2.3.0.a.1, 124.6.0.?, 2460.6.0.?, 76260.12.0.?
266910.h2 266910.h \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $2$ $\Z/2\Z$ $2.168328964$ $[1, 1, 0, 5983, 36069]$ \(y^2+xy=x^3+x^2+5983x+36069\) 2.3.0.a.1, 124.6.0.?, 1230.6.0.?, 76260.12.0.?
266910.i1 266910.i \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $2$ $\Z/2\Z$ $0.916700715$ $[1, 1, 0, -58702, 5440666]$ \(y^2+xy=x^3+x^2-58702x+5440666\) 2.3.0.a.1, 8.6.0.b.1, 5084.6.0.?, 10168.12.0.?
266910.i2 266910.i \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $2$ $\Z/2\Z$ $0.916700715$ $[1, 1, 0, -2452, 141916]$ \(y^2+xy=x^3+x^2-2452x+141916\) 2.3.0.a.1, 8.6.0.c.1, 2542.6.0.?, 10168.12.0.?
266910.j1 266910.j \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -2172, 38736]$ \(y^2+xy=x^3+x^2-2172x+38736\) 355880.2.0.?
266910.k1 266910.k \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -26245347, -51762864141]$ \(y^2+xy=x^3+x^2-26245347x-51762864141\) 2.3.0.a.1, 124.6.0.?, 328.6.0.?, 10168.12.0.?
266910.k2 266910.k \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1635097, -814724591]$ \(y^2+xy=x^3+x^2-1635097x-814724591\) 2.3.0.a.1, 62.6.0.b.1, 328.6.0.?, 10168.12.0.?
266910.l1 266910.l \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1301162, 574437204]$ \(y^2+xy=x^3+x^2-1301162x+574437204\) 1067640.2.0.?
266910.m1 266910.m \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 12353, -1282619]$ \(y^2+xy=x^3+x^2+12353x-1282619\) 1067640.2.0.?
266910.n1 266910.n \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\mathsf{trivial}$ $40.87761710$ $[1, 1, 0, -3607222, -2599935404]$ \(y^2+xy=x^3+x^2-3607222x-2599935404\) 1067640.2.0.?
266910.o1 266910.o \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -2225177, 1221264741]$ \(y^2+xy=x^3+x^2-2225177x+1221264741\) 213528.2.0.?
266910.p1 266910.p \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -12992, -573006]$ \(y^2+xy=x^3+x^2-12992x-573006\) 213528.2.0.?
266910.q1 266910.q \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $2$ $\mathsf{trivial}$ $0.326277862$ $[1, 1, 0, -2488727, 1519768341]$ \(y^2+xy=x^3+x^2-2488727x+1519768341\) 76260.2.0.?
266910.r1 266910.r \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\mathsf{trivial}$ $6.831810005$ $[1, 0, 1, -37929, -3859508]$ \(y^2+xy+y=x^3-37929x-3859508\) 355880.2.0.?
266910.s1 266910.s \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/2\Z$ $8.295418610$ $[1, 0, 1, -7164585499, -233418791183578]$ \(y^2+xy+y=x^3-7164585499x-233418791183578\) 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 124.6.0.?, 372.48.0.?, $\ldots$
266910.s2 266910.s \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/2\Z$ $16.59083722$ $[1, 0, 1, -447145499, -3658160399578]$ \(y^2+xy+y=x^3-447145499x-3658160399578\) 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 62.6.0.b.1, 186.48.0.?, $\ldots$
266910.s3 266910.s \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/6\Z$ $2.765139536$ $[1, 0, 1, -95455084, -266538214294]$ \(y^2+xy+y=x^3-95455084x-266538214294\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 124.6.0.?, 372.48.0.?, $\ldots$
266910.s4 266910.s \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/6\Z$ $5.530279073$ $[1, 0, 1, 14818516, -26759298454]$ \(y^2+xy+y=x^3+14818516x-26759298454\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 62.6.0.b.1, 186.48.0.?, $\ldots$
266910.t1 266910.t \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/2\Z$ $0.509155988$ $[1, 0, 1, -17209, 866636]$ \(y^2+xy+y=x^3-17209x+866636\) 2.3.0.a.1, 124.6.0.?, 410.6.0.?, 25420.12.0.?
266910.t2 266910.t \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/2\Z$ $1.018311977$ $[1, 0, 1, -809, 20396]$ \(y^2+xy+y=x^3-809x+20396\) 2.3.0.a.1, 62.6.0.b.1, 820.6.0.?, 25420.12.0.?
266910.u1 266910.u \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -33084549, -73228564304]$ \(y^2+xy+y=x^3-33084549x-73228564304\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 20.12.0-4.c.1.1, 40.24.0-40.v.1.4, $\ldots$
266910.u2 266910.u \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -2351749, -809794384]$ \(y^2+xy+y=x^3-2351749x-809794384\) 2.6.0.a.1, 8.12.0-2.a.1.1, 20.12.0-2.a.1.1, 40.24.0-40.a.1.3, 15252.12.0.?, $\ldots$
266910.u3 266910.u \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1041029, 399738032]$ \(y^2+xy+y=x^3-1041029x+399738032\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 20.12.0-4.c.1.2, 40.24.0-40.bb.1.9, $\ldots$
266910.u4 266910.u \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 7409531, -5795856208]$ \(y^2+xy+y=x^3+7409531x-5795856208\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 40.24.0-40.bb.1.14, 15252.12.0.?, $\ldots$
266910.v1 266910.v \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -16199, 1098146]$ \(y^2+xy+y=x^3-16199x+1098146\) 3.8.0-3.a.1.2, 1067640.16.0.?
266910.v2 266910.v \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 128386, -14268688]$ \(y^2+xy+y=x^3+128386x-14268688\) 3.8.0-3.a.1.1, 1067640.16.0.?
266910.w1 266910.w \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -5382924, 4809493066]$ \(y^2+xy+y=x^3-5382924x+4809493066\) 1067640.2.0.?
266910.x1 266910.x \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\mathsf{trivial}$ $1.555173294$ $[1, 0, 1, -32049, 357316]$ \(y^2+xy+y=x^3-32049x+357316\) 213528.2.0.?
266910.y1 266910.y \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\mathsf{trivial}$ $0.128429627$ $[1, 0, 1, 128394172, -1721077792702]$ \(y^2+xy+y=x^3+128394172x-1721077792702\) 76260.2.0.?
266910.z1 266910.z \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/2\Z$ $4.726699890$ $[1, 0, 1, -1494468, 703040518]$ \(y^2+xy+y=x^3-1494468x+703040518\) 2.3.0.a.1, 124.6.0.?, 5740.6.0.?, 177940.12.0.?
266910.z2 266910.z \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/2\Z$ $2.363349945$ $[1, 0, 1, -88168, 12265958]$ \(y^2+xy+y=x^3-88168x+12265958\) 2.3.0.a.1, 62.6.0.b.1, 5740.6.0.?, 177940.12.0.?
266910.ba1 266910.ba \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\mathsf{trivial}$ $0.660210001$ $[1, 0, 1, -10483498, -12891474244]$ \(y^2+xy+y=x^3-10483498x-12891474244\) 213528.2.0.?
266910.bb1 266910.bb \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/2\Z$ $6.339655101$ $[1, 0, 1, -3061328, -2061894994]$ \(y^2+xy+y=x^3-3061328x-2061894994\) 2.3.0.a.1, 124.6.0.?, 5740.6.0.?, 177940.12.0.?
266910.bb2 266910.bb \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\Z/2\Z$ $3.169827550$ $[1, 0, 1, -191328, -32230994]$ \(y^2+xy+y=x^3-191328x-32230994\) 2.3.0.a.1, 62.6.0.b.1, 5740.6.0.?, 177940.12.0.?
266910.bc1 266910.bc \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -32043, -941834]$ \(y^2+xy+y=x^3-32043x-941834\) 2.3.0.a.1, 40.6.0.b.1, 124.6.0.?, 1240.12.0.?
266910.bc2 266910.bc \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 7157, -110794]$ \(y^2+xy+y=x^3+7157x-110794\) 2.3.0.a.1, 40.6.0.c.1, 62.6.0.b.1, 1240.12.0.?
266910.bd1 266910.bd \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $2$ $\mathsf{trivial}$ $0.146250648$ $[1, 0, 1, -3538, 81656]$ \(y^2+xy+y=x^3-3538x+81656\) 76260.2.0.?
266910.be1 266910.be \( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 \) $1$ $\mathsf{trivial}$ $0.984620315$ $[1, 0, 1, 43497, -3106502]$ \(y^2+xy+y=x^3+43497x-3106502\) 177940.2.0.?
Next   displayed columns for results