Properties

Label 2664.f
Number of curves $1$
Conductor $2664$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 2664.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2664.f1 2664f1 \([0, 0, 0, -84, -268]\) \(351232/37\) \(6905088\) \([]\) \(480\) \(0.047066\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2664.f1 has rank \(1\).

Complex multiplication

The elliptic curves in class 2664.f do not have complex multiplication.

Modular form 2664.2.a.f

sage: E.q_eigenform(10)
 
\(q + 2 q^{5} + q^{7} - q^{11} - 6 q^{13} + 4 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display