| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 266175.a1 |
266175a1 |
266175.a |
266175a |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{8} \cdot 7^{4} \cdot 13^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.804202433$ |
$1$ |
|
$16$ |
$10183680$ |
$2.418278$ |
$-7188480/2401$ |
$1.11082$ |
$4.23751$ |
$[0, 0, 1, -823875, 361475156]$ |
\(y^2+y=x^3-823875x+361475156\) |
6.2.0.a.1 |
$[(0, 19012), (4225/2, 207021/2)]$ |
| 266175.b1 |
266175b1 |
266175.b |
266175b |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{13} \cdot 5^{4} \cdot 7^{4} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$9.955314693$ |
$1$ |
|
$2$ |
$65415168$ |
$3.371685$ |
$-1375916339200/5250987$ |
$1.00957$ |
$5.33430$ |
$[0, 0, 1, -92109225, -341373745944]$ |
\(y^2+y=x^3-92109225x-341373745944\) |
6.2.0.a.1 |
$[(15519, 1402415)]$ |
| 266175.c1 |
266175c1 |
266175.c |
266175c |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{6} \cdot 5^{11} \cdot 7 \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1008000$ |
$1.295656$ |
$-1437696/21875$ |
$0.88927$ |
$3.11108$ |
$[0, 0, 1, -2925, -318094]$ |
\(y^2+y=x^3-2925x-318094\) |
70.2.0.a.1 |
$[ ]$ |
| 266175.d1 |
266175d2 |
266175.d |
266175d |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{6} \cdot 5^{3} \cdot 7^{5} \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$2730$ |
$48$ |
$1$ |
$18.16315374$ |
$1$ |
|
$0$ |
$2808000$ |
$1.885973$ |
$-2887553024/16807$ |
$0.98803$ |
$3.89079$ |
$[0, 0, 1, -225615, -41454644]$ |
\(y^2+y=x^3-225615x-41454644\) |
5.12.0.a.1, 70.24.1.d.1, 195.24.0.?, 2730.48.1.? |
$[(133407440/379, 1276862182233/379)]$ |
| 266175.d2 |
266175d1 |
266175.d |
266175d |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{6} \cdot 5^{3} \cdot 7 \cdot 13^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2730$ |
$48$ |
$1$ |
$3.632630749$ |
$1$ |
|
$2$ |
$561600$ |
$1.081255$ |
$4096/7$ |
$0.98030$ |
$2.86561$ |
$[0, 0, 1, 2535, 68656]$ |
\(y^2+y=x^3+2535x+68656\) |
5.12.0.a.2, 70.24.1.d.2, 195.24.0.?, 2730.48.1.? |
$[(35, 447)]$ |
| 266175.e1 |
266175e1 |
266175.e |
266175e |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{9} \cdot 5^{10} \cdot 7^{4} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$6.083853108$ |
$1$ |
|
$2$ |
$62899200$ |
$3.401714$ |
$-970444800/2401$ |
$0.91119$ |
$5.37940$ |
$[0, 0, 1, -111223125, 452446403906]$ |
\(y^2+y=x^3-111223125x+452446403906\) |
6.2.0.a.1 |
$[(6304, 42654)]$ |
| 266175.f1 |
266175f1 |
266175.f |
266175f |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{14} \cdot 5^{6} \cdot 7^{7} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$126443520$ |
$3.827011$ |
$1811564780171264/11870974573731$ |
$1.04721$ |
$5.53201$ |
$[0, 0, 1, 96570825, 1173621540406]$ |
\(y^2+y=x^3+96570825x+1173621540406\) |
182.2.0.? |
$[ ]$ |
| 266175.g1 |
266175g1 |
266175.g |
266175g |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{9} \cdot 5^{4} \cdot 7^{4} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.813981470$ |
$1$ |
|
$14$ |
$967680$ |
$1.314520$ |
$-970444800/2401$ |
$0.91119$ |
$3.37440$ |
$[0, 0, 1, -26325, 1647506]$ |
\(y^2+y=x^3-26325x+1647506\) |
6.2.0.a.1 |
$[(100, 122), (51, 661)]$ |
| 266175.h1 |
266175h1 |
266175.h |
266175h |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{13} \cdot 5^{10} \cdot 7^{4} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$25159680$ |
$2.893929$ |
$-1375916339200/5250987$ |
$1.00957$ |
$4.87536$ |
$[0, 0, 1, -13625625, -19422721094]$ |
\(y^2+y=x^3-13625625x-19422721094\) |
6.2.0.a.1 |
$[ ]$ |
| 266175.i1 |
266175i1 |
266175.i |
266175i |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{2} \cdot 7^{4} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.685728490$ |
$1$ |
|
$4$ |
$156672$ |
$0.331082$ |
$-7188480/2401$ |
$1.11082$ |
$2.23250$ |
$[0, 0, 1, -195, 1316]$ |
\(y^2+y=x^3-195x+1316\) |
6.2.0.a.1 |
$[(4, 24)]$ |
| 266175.j1 |
266175j1 |
266175.j |
266175j |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{9} \cdot 5^{8} \cdot 7^{4} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.946913407$ |
$1$ |
|
$4$ |
$2350080$ |
$1.685108$ |
$-7188480/2401$ |
$1.11082$ |
$3.53321$ |
$[0, 0, 1, -43875, -4442344]$ |
\(y^2+y=x^3-43875x-4442344\) |
6.2.0.a.1 |
$[(675, 16537)]$ |
| 266175.k1 |
266175k1 |
266175.k |
266175k |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{8} \cdot 5^{3} \cdot 7 \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3594240$ |
$2.042625$ |
$-647868416/63$ |
$0.88106$ |
$4.18102$ |
$[0, 0, 1, -757965, -254014394]$ |
\(y^2+y=x^3-757965x-254014394\) |
70.2.0.a.1 |
$[ ]$ |
| 266175.l1 |
266175l1 |
266175.l |
266175l |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{8} \cdot 5^{7} \cdot 7 \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$2.156440794$ |
$1$ |
|
$2$ |
$1437696$ |
$1.394957$ |
$-692224/315$ |
$0.76822$ |
$3.24497$ |
$[0, 0, 1, -12675, -734094]$ |
\(y^2+y=x^3-12675x-734094\) |
70.2.0.a.1 |
$[(155, 1012)]$ |
| 266175.m1 |
266175m1 |
266175.m |
266175m |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{10} \cdot 7^{4} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1612800$ |
$1.569933$ |
$-970444800/2401$ |
$0.91119$ |
$3.61975$ |
$[0, 0, 1, -73125, -7627344]$ |
\(y^2+y=x^3-73125x-7627344\) |
6.2.0.a.1 |
$[ ]$ |
| 266175.n1 |
266175n2 |
266175.n |
266175n |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{8} \cdot 5^{6} \cdot 7^{5} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$2730$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$10368000$ |
$2.557182$ |
$-13383627864961024/151263$ |
$1.15507$ |
$4.88924$ |
$[0, 0, 1, -14468025, -21181757594]$ |
\(y^2+y=x^3-14468025x-21181757594\) |
5.6.0.a.1, 65.12.0.a.1, 70.12.0.a.1, 182.2.0.?, 195.24.0.?, $\ldots$ |
$[ ]$ |
| 266175.n2 |
266175n1 |
266175.n |
266175n |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{16} \cdot 5^{6} \cdot 7 \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$2730$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$2073600$ |
$1.752464$ |
$5451776/413343$ |
$1.25184$ |
$3.54808$ |
$[0, 0, 1, 10725, -4874594]$ |
\(y^2+y=x^3+10725x-4874594\) |
5.6.0.a.1, 65.12.0.a.2, 70.12.0.a.2, 182.2.0.?, 195.24.0.?, $\ldots$ |
$[ ]$ |
| 266175.o1 |
266175o1 |
266175.o |
266175o |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{4} \cdot 7^{4} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.659725066$ |
$1$ |
|
$6$ |
$4193280$ |
$2.047688$ |
$-970444800/2401$ |
$0.91119$ |
$4.07870$ |
$[0, 0, 1, -494325, -134058194]$ |
\(y^2+y=x^3-494325x-134058194\) |
6.2.0.a.1 |
$[(1690, 62107)]$ |
| 266175.p1 |
266175p1 |
266175.p |
266175p |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{6} \cdot 5^{9} \cdot 7^{5} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$0.195665415$ |
$1$ |
|
$8$ |
$25159680$ |
$2.956135$ |
$-1437696/2100875$ |
$1.28311$ |
$4.70552$ |
$[0, 0, 1, -494325, 6723437906]$ |
\(y^2+y=x^3-494325x+6723437906\) |
70.2.0.a.1 |
$[(7605, 665437)]$ |
| 266175.q1 |
266175q1 |
266175.q |
266175q |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{8} \cdot 5^{9} \cdot 7 \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1382400$ |
$1.564869$ |
$-647868416/63$ |
$0.88106$ |
$3.72208$ |
$[0, 0, 1, -112125, -14452344]$ |
\(y^2+y=x^3-112125x-14452344\) |
70.2.0.a.1 |
$[ ]$ |
| 266175.r1 |
266175r1 |
266175.r |
266175r |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{6} \cdot 5^{2} \cdot 7^{2} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$2.518124823$ |
$1$ |
|
$0$ |
$967680$ |
$1.348288$ |
$2560000/637$ |
$0.81958$ |
$3.19853$ |
$[0, 0, 1, -12675, -414684]$ |
\(y^2+y=x^3-12675x-414684\) |
26.2.0.a.1 |
$[(-351/2, 1179/2)]$ |
| 266175.s1 |
266175s1 |
266175.s |
266175s |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{6} \cdot 5^{7} \cdot 7^{3} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$5.723244024$ |
$1$ |
|
$2$ |
$22239360$ |
$2.800026$ |
$-692224/1715$ |
$0.81808$ |
$4.56372$ |
$[0, 0, 1, -2142075, -2773094594]$ |
\(y^2+y=x^3-2142075x-2773094594\) |
70.2.0.a.1 |
$[(7355, 615912)]$ |
| 266175.t1 |
266175t1 |
266175.t |
266175t |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{9} \cdot 5^{2} \cdot 7^{4} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6110208$ |
$2.162865$ |
$-7188480/2401$ |
$1.11082$ |
$3.99215$ |
$[0, 0, 1, -296595, -78078634]$ |
\(y^2+y=x^3-296595x-78078634\) |
6.2.0.a.1 |
$[ ]$ |
| 266175.u1 |
266175u1 |
266175.u |
266175u |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{7} \cdot 5^{9} \cdot 7^{5} \cdot 13^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$420$ |
$12$ |
$0$ |
$6.184252179$ |
$1$ |
|
$3$ |
$64512000$ |
$3.603477$ |
$108647414150813/1440074181$ |
$0.94977$ |
$5.50640$ |
$[1, -1, 1, -189004055, -988559195178]$ |
\(y^2+xy+y=x^3-x^2-189004055x-988559195178\) |
2.3.0.a.1, 20.6.0.b.1, 84.6.0.?, 210.6.0.?, 420.12.0.? |
$[(315728, 177077421)]$ |
| 266175.u2 |
266175u2 |
266175.u |
266175u |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{8} \cdot 5^{9} \cdot 7^{10} \cdot 13^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$420$ |
$12$ |
$0$ |
$12.36850435$ |
$1$ |
|
$0$ |
$129024000$ |
$3.950050$ |
$-366600498893/429644853729$ |
$1.03436$ |
$5.66028$ |
$[1, -1, 1, -28348430, -2615036742678]$ |
\(y^2+xy+y=x^3-x^2-28348430x-2615036742678\) |
2.3.0.a.1, 20.6.0.a.1, 84.6.0.?, 420.12.0.? |
$[(15465797/7, 60756299778/7)]$ |
| 266175.v1 |
266175v2 |
266175.v |
266175v |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{3} \cdot 5^{12} \cdot 7^{10} \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5460$ |
$12$ |
$0$ |
$8.147106864$ |
$1$ |
|
$0$ |
$100638720$ |
$3.840237$ |
$9316717055063573427/57377784953125$ |
$1.08659$ |
$5.76537$ |
$[1, -1, 1, -555641105, -5014231249478]$ |
\(y^2+xy+y=x^3-x^2-555641105x-5014231249478\) |
2.3.0.a.1, 156.6.0.?, 420.6.0.?, 1820.6.0.?, 5460.12.0.? |
$[(-13118759/32, 1444111885/32)]$ |
| 266175.v2 |
266175v1 |
266175.v |
266175v |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{3} \cdot 5^{9} \cdot 7^{5} \cdot 13^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5460$ |
$12$ |
$0$ |
$16.29421372$ |
$1$ |
|
$1$ |
$50319360$ |
$3.493660$ |
$9275335480470938787/355047875$ |
$1.08642$ |
$5.76502$ |
$[1, -1, 1, -554817230, -5029919477228]$ |
\(y^2+xy+y=x^3-x^2-554817230x-5029919477228\) |
2.3.0.a.1, 156.6.0.?, 210.6.0.?, 1820.6.0.?, 5460.12.0.? |
$[(263619703/19, 4275465530864/19)]$ |
| 266175.w1 |
266175w1 |
266175.w |
266175w |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{4} \cdot 7^{3} \cdot 13^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1092$ |
$2$ |
$0$ |
$0.743783097$ |
$1$ |
|
$16$ |
$870912$ |
$1.476326$ |
$-492075/4459$ |
$0.88749$ |
$3.28553$ |
$[1, -1, 1, -7130, 947522]$ |
\(y^2+xy+y=x^3-x^2-7130x+947522\) |
1092.2.0.? |
$[(49, 820), (114, 1210)]$ |
| 266175.x1 |
266175x1 |
266175.x |
266175x |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{11} \cdot 5^{4} \cdot 7^{2} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$0.527485594$ |
$1$ |
|
$6$ |
$5391360$ |
$2.398487$ |
$1257715225/11907$ |
$0.89402$ |
$4.36295$ |
$[1, -1, 1, -1616855, -784420828]$ |
\(y^2+xy+y=x^3-x^2-1616855x-784420828\) |
12.2.0.a.1 |
$[(4014, 237550)]$ |
| 266175.y1 |
266175y2 |
266175.y |
266175y |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{10} \cdot 5^{12} \cdot 7 \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$1.986057270$ |
$1$ |
|
$4$ |
$2211840$ |
$2.029274$ |
$24820429213/8859375$ |
$0.91720$ |
$3.83273$ |
$[1, -1, 1, -177755, -17812128]$ |
\(y^2+xy+y=x^3-x^2-177755x-17812128\) |
2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? |
$[(-201, 3225)]$ |
| 266175.y2 |
266175y1 |
266175.y |
266175y |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{8} \cdot 5^{9} \cdot 7^{2} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$0.993028635$ |
$1$ |
|
$7$ |
$1105920$ |
$1.682699$ |
$1892819053/55125$ |
$0.87529$ |
$3.62671$ |
$[1, -1, 1, -75380, 7781622]$ |
\(y^2+xy+y=x^3-x^2-75380x+7781622\) |
2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? |
$[(114, 755)]$ |
| 266175.z1 |
266175z1 |
266175.z |
266175z |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{9} \cdot 5^{2} \cdot 7 \cdot 13^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1092$ |
$2$ |
$0$ |
$2.332861865$ |
$1$ |
|
$0$ |
$3386880$ |
$2.284466$ |
$179685/2599051$ |
$1.07692$ |
$4.06034$ |
$[1, -1, 1, 15685, 119533132]$ |
\(y^2+xy+y=x^3-x^2+15685x+119533132\) |
1092.2.0.? |
$[(-1585/2, 58703/2)]$ |
| 266175.ba1 |
266175ba1 |
266175.ba |
266175ba |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{3} \cdot 5^{6} \cdot 7 \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1092$ |
$12$ |
$0$ |
$2.932045934$ |
$1$ |
|
$5$ |
$774144$ |
$1.451796$ |
$421875/91$ |
$0.93663$ |
$3.30571$ |
$[1, -1, 1, -19805, 854572]$ |
\(y^2+xy+y=x^3-x^2-19805x+854572\) |
2.3.0.a.1, 12.6.0.c.1, 364.6.0.?, 546.6.0.?, 1092.12.0.? |
$[(-26, 1175)]$ |
| 266175.ba2 |
266175ba2 |
266175.ba |
266175ba |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{6} \cdot 7^{2} \cdot 13^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1092$ |
$12$ |
$0$ |
$1.466022967$ |
$1$ |
|
$6$ |
$1548288$ |
$1.798370$ |
$4492125/8281$ |
$0.90809$ |
$3.55765$ |
$[1, -1, 1, 43570, 5164072]$ |
\(y^2+xy+y=x^3-x^2+43570x+5164072\) |
2.3.0.a.1, 6.6.0.a.1, 364.6.0.?, 1092.12.0.? |
$[(-16, 2120)]$ |
| 266175.bb1 |
266175bb3 |
266175.bb |
266175bb |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{6} \cdot 5^{9} \cdot 7 \cdot 13^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$24772608$ |
$3.301575$ |
$11264882429818809/24990875$ |
$0.98096$ |
$5.49143$ |
$[1, -1, 1, -177583880, 910906409872]$ |
\(y^2+xy+y=x^3-x^2-177583880x+910906409872\) |
2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 140.12.0.?, 156.12.0.?, $\ldots$ |
$[ ]$ |
| 266175.bb2 |
266175bb2 |
266175.bb |
266175bb |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{6} \cdot 5^{12} \cdot 7^{2} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$5460$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$12386304$ |
$2.955002$ |
$2844576388809/129390625$ |
$0.96596$ |
$4.82828$ |
$[1, -1, 1, -11224505, 13896659872]$ |
\(y^2+xy+y=x^3-x^2-11224505x+13896659872\) |
2.6.0.a.1, 60.12.0-2.a.1.1, 84.12.0.?, 140.12.0.?, 156.12.0.?, $\ldots$ |
$[ ]$ |
| 266175.bb3 |
266175bb1 |
266175.bb |
266175bb |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{6} \cdot 5^{9} \cdot 7^{4} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$6193152$ |
$2.608429$ |
$13980103929/3901625$ |
$0.88564$ |
$4.40276$ |
$[1, -1, 1, -1908380, -729656378]$ |
\(y^2+xy+y=x^3-x^2-1908380x-729656378\) |
2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.2, 130.6.0.?, 156.12.0.?, $\ldots$ |
$[ ]$ |
| 266175.bb4 |
266175bb4 |
266175.bb |
266175bb |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{6} \cdot 5^{18} \cdot 7 \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$24772608$ |
$3.301575$ |
$451394172711/22216796875$ |
$1.03650$ |
$5.03566$ |
$[1, -1, 1, 6076870, 52859356372]$ |
\(y^2+xy+y=x^3-x^2+6076870x+52859356372\) |
2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.1, 168.12.0.?, 182.6.0.?, $\ldots$ |
$[ ]$ |
| 266175.bc1 |
266175bc2 |
266175.bc |
266175bc |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{9} \cdot 5^{3} \cdot 7^{4} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.29 |
2B |
$1680$ |
$96$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$1658880$ |
$1.865414$ |
$8869743/2401$ |
$0.92625$ |
$3.69068$ |
$[1, -1, 1, -98390, -8641538]$ |
\(y^2+xy+y=x^3-x^2-98390x-8641538\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 48.24.0.l.2, 56.24.0.dm.1, $\ldots$ |
$[ ]$ |
| 266175.bc2 |
266175bc1 |
266175.bc |
266175bc |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{9} \cdot 5^{3} \cdot 7^{2} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.31 |
2B |
$1680$ |
$96$ |
$3$ |
$1$ |
$1$ |
|
$1$ |
$829440$ |
$1.518839$ |
$35937/49$ |
$0.83942$ |
$3.27409$ |
$[1, -1, 1, 15685, -884438]$ |
\(y^2+xy+y=x^3-x^2+15685x-884438\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 28.12.0.n.1, 30.6.0.a.1, $\ldots$ |
$[ ]$ |
| 266175.bd1 |
266175bd4 |
266175.bd |
266175bd |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{11} \cdot 5^{10} \cdot 7^{4} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$61931520$ |
$3.658913$ |
$531301262949272089/4740474375$ |
$0.97353$ |
$5.79992$ |
$[1, -1, 1, -641615630, -6255269584378]$ |
\(y^2+xy+y=x^3-x^2-641615630x-6255269584378\) |
2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.3, 60.12.0-4.c.1.2, 156.12.0.?, $\ldots$ |
$[ ]$ |
| 266175.bd2 |
266175bd2 |
266175.bd |
266175bd |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{16} \cdot 5^{8} \cdot 7^{2} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$5460$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$30965760$ |
$3.312340$ |
$138742439989609/12224619225$ |
$0.93130$ |
$5.13946$ |
$[1, -1, 1, -41010755, -93063566878]$ |
\(y^2+xy+y=x^3-x^2-41010755x-93063566878\) |
2.6.0.a.1, 28.12.0-2.a.1.2, 60.12.0-2.a.1.1, 156.12.0.?, 260.12.0.?, $\ldots$ |
$[ ]$ |
| 266175.bd3 |
266175bd1 |
266175.bd |
266175bd |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{11} \cdot 5^{7} \cdot 7 \cdot 13^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$15482880$ |
$2.965767$ |
$1408317602329/242911305$ |
$0.90102$ |
$4.77200$ |
$[1, -1, 1, -8879630, 8535050372]$ |
\(y^2+xy+y=x^3-x^2-8879630x+8535050372\) |
2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.3, 120.12.0.?, 210.6.0.?, $\ldots$ |
$[ ]$ |
| 266175.bd4 |
266175bd3 |
266175.bd |
266175bd |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{26} \cdot 5^{7} \cdot 7 \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$61931520$ |
$3.658913$ |
$189425802193991/1586486902455$ |
$0.97102$ |
$5.37257$ |
$[1, -1, 1, 45496120, -433554626878]$ |
\(y^2+xy+y=x^3-x^2+45496120x-433554626878\) |
2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.3, 60.12.0-4.c.1.1, 312.12.0.?, $\ldots$ |
$[ ]$ |
| 266175.be1 |
266175be1 |
266175.be |
266175be |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{10} \cdot 5^{3} \cdot 7^{2} \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$1.354403718$ |
$1$ |
|
$7$ |
$2064384$ |
$1.890024$ |
$833237621/51597$ |
$0.84991$ |
$3.79049$ |
$[1, -1, 1, -149090, 20975712]$ |
\(y^2+xy+y=x^3-x^2-149090x+20975712\) |
2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? |
$[(270, 456)]$ |
| 266175.be2 |
266175be2 |
266175.be |
266175be |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{14} \cdot 5^{3} \cdot 7 \cdot 13^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$2.708807437$ |
$1$ |
|
$4$ |
$4128768$ |
$2.236595$ |
$403583419/7761663$ |
$0.91964$ |
$4.01048$ |
$[1, -1, 1, 117085, 87519462]$ |
\(y^2+xy+y=x^3-x^2+117085x+87519462\) |
2.3.0.a.1, 70.6.0.a.1, 260.6.0.?, 364.6.0.?, 1820.12.0.? |
$[(-315, 4551)]$ |
| 266175.bf1 |
266175bf2 |
266175.bf |
266175bf |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{14} \cdot 5^{12} \cdot 7^{5} \cdot 13^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$18.69794028$ |
$1$ |
|
$0$ |
$517570560$ |
$4.742523$ |
$80214500261567905813/1722980109375$ |
$1.09150$ |
$6.81754$ |
$[1, -1, 1, -44414246480, 3602672957983272]$ |
\(y^2+xy+y=x^3-x^2-44414246480x+3602672957983272\) |
2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? |
$[(42745149416/643, 2848323424102965/643)]$ |
| 266175.bf2 |
266175bf1 |
266175.bf |
266175bf |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{10} \cdot 5^{9} \cdot 7^{10} \cdot 13^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$37.39588057$ |
$1$ |
|
$1$ |
$258785280$ |
$4.395950$ |
$21726280496903653/2860061896125$ |
$1.07432$ |
$6.16000$ |
$[1, -1, 1, -2873645105, 52114677259272]$ |
\(y^2+xy+y=x^3-x^2-2873645105x+52114677259272\) |
2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? |
$[(147891445996418894/2612509, 2373824140781712110893950/2612509)]$ |
| 266175.bg1 |
266175bg1 |
266175.bg |
266175bg |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( 3^{11} \cdot 5^{10} \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2073600$ |
$1.920732$ |
$1257715225/11907$ |
$0.89402$ |
$3.90401$ |
$[1, -1, 1, -239180, -44593428]$ |
\(y^2+xy+y=x^3-x^2-239180x-44593428\) |
12.2.0.a.1 |
$[ ]$ |
| 266175.bh1 |
266175bh1 |
266175.bh |
266175bh |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{7} \cdot 5^{11} \cdot 7^{5} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2764800$ |
$2.037971$ |
$-24606647689/157565625$ |
$0.93541$ |
$3.82606$ |
$[1, -1, 1, -75380, 27687872]$ |
\(y^2+xy+y=x^3-x^2-75380x+27687872\) |
420.2.0.? |
$[ ]$ |
| 266175.bi1 |
266175bi1 |
266175.bi |
266175bi |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) |
\( - 3^{6} \cdot 5^{11} \cdot 7^{3} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$20217600$ |
$2.995834$ |
$-32485001809/1071875$ |
$0.89010$ |
$4.88535$ |
$[1, -1, 1, -13974980, 20677083522]$ |
\(y^2+xy+y=x^3-x^2-13974980x+20677083522\) |
70.2.0.a.1 |
$[ ]$ |