Learn more

Refine search


Results (1-50 of 199 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
266175.a1 266175.a \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $0.804202433$ $[0, 0, 1, -823875, 361475156]$ \(y^2+y=x^3-823875x+361475156\) 6.2.0.a.1 $[(0, 19012), (4225/2, 207021/2)]$
266175.b1 266175.b \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $9.955314693$ $[0, 0, 1, -92109225, -341373745944]$ \(y^2+y=x^3-92109225x-341373745944\) 6.2.0.a.1 $[(15519, 1402415)]$
266175.c1 266175.c \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -2925, -318094]$ \(y^2+y=x^3-2925x-318094\) 70.2.0.a.1 $[ ]$
266175.d1 266175.d \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $18.16315374$ $[0, 0, 1, -225615, -41454644]$ \(y^2+y=x^3-225615x-41454644\) 5.12.0.a.1, 70.24.1.d.1, 195.24.0.?, 2730.48.1.? $[(133407440/379, 1276862182233/379)]$
266175.d2 266175.d \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.632630749$ $[0, 0, 1, 2535, 68656]$ \(y^2+y=x^3+2535x+68656\) 5.12.0.a.2, 70.24.1.d.2, 195.24.0.?, 2730.48.1.? $[(35, 447)]$
266175.e1 266175.e \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $6.083853108$ $[0, 0, 1, -111223125, 452446403906]$ \(y^2+y=x^3-111223125x+452446403906\) 6.2.0.a.1 $[(6304, 42654)]$
266175.f1 266175.f \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 96570825, 1173621540406]$ \(y^2+y=x^3+96570825x+1173621540406\) 182.2.0.? $[ ]$
266175.g1 266175.g \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $0.813981470$ $[0, 0, 1, -26325, 1647506]$ \(y^2+y=x^3-26325x+1647506\) 6.2.0.a.1 $[(100, 122), (51, 661)]$
266175.h1 266175.h \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -13625625, -19422721094]$ \(y^2+y=x^3-13625625x-19422721094\) 6.2.0.a.1 $[ ]$
266175.i1 266175.i \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.685728490$ $[0, 0, 1, -195, 1316]$ \(y^2+y=x^3-195x+1316\) 6.2.0.a.1 $[(4, 24)]$
266175.j1 266175.j \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.946913407$ $[0, 0, 1, -43875, -4442344]$ \(y^2+y=x^3-43875x-4442344\) 6.2.0.a.1 $[(675, 16537)]$
266175.k1 266175.k \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -757965, -254014394]$ \(y^2+y=x^3-757965x-254014394\) 70.2.0.a.1 $[ ]$
266175.l1 266175.l \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.156440794$ $[0, 0, 1, -12675, -734094]$ \(y^2+y=x^3-12675x-734094\) 70.2.0.a.1 $[(155, 1012)]$
266175.m1 266175.m \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -73125, -7627344]$ \(y^2+y=x^3-73125x-7627344\) 6.2.0.a.1 $[ ]$
266175.n1 266175.n \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -14468025, -21181757594]$ \(y^2+y=x^3-14468025x-21181757594\) 5.6.0.a.1, 65.12.0.a.1, 70.12.0.a.1, 182.2.0.?, 195.24.0.?, $\ldots$ $[ ]$
266175.n2 266175.n \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 10725, -4874594]$ \(y^2+y=x^3+10725x-4874594\) 5.6.0.a.1, 65.12.0.a.2, 70.12.0.a.2, 182.2.0.?, 195.24.0.?, $\ldots$ $[ ]$
266175.o1 266175.o \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.659725066$ $[0, 0, 1, -494325, -134058194]$ \(y^2+y=x^3-494325x-134058194\) 6.2.0.a.1 $[(1690, 62107)]$
266175.p1 266175.p \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.195665415$ $[0, 0, 1, -494325, 6723437906]$ \(y^2+y=x^3-494325x+6723437906\) 70.2.0.a.1 $[(7605, 665437)]$
266175.q1 266175.q \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -112125, -14452344]$ \(y^2+y=x^3-112125x-14452344\) 70.2.0.a.1 $[ ]$
266175.r1 266175.r \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.518124823$ $[0, 0, 1, -12675, -414684]$ \(y^2+y=x^3-12675x-414684\) 26.2.0.a.1 $[(-351/2, 1179/2)]$
266175.s1 266175.s \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $5.723244024$ $[0, 0, 1, -2142075, -2773094594]$ \(y^2+y=x^3-2142075x-2773094594\) 70.2.0.a.1 $[(7355, 615912)]$
266175.t1 266175.t \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -296595, -78078634]$ \(y^2+y=x^3-296595x-78078634\) 6.2.0.a.1 $[ ]$
266175.u1 266175.u \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $6.184252179$ $[1, -1, 1, -189004055, -988559195178]$ \(y^2+xy+y=x^3-x^2-189004055x-988559195178\) 2.3.0.a.1, 20.6.0.b.1, 84.6.0.?, 210.6.0.?, 420.12.0.? $[(315728, 177077421)]$
266175.u2 266175.u \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $12.36850435$ $[1, -1, 1, -28348430, -2615036742678]$ \(y^2+xy+y=x^3-x^2-28348430x-2615036742678\) 2.3.0.a.1, 20.6.0.a.1, 84.6.0.?, 420.12.0.? $[(15465797/7, 60756299778/7)]$
266175.v1 266175.v \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $8.147106864$ $[1, -1, 1, -555641105, -5014231249478]$ \(y^2+xy+y=x^3-x^2-555641105x-5014231249478\) 2.3.0.a.1, 156.6.0.?, 420.6.0.?, 1820.6.0.?, 5460.12.0.? $[(-13118759/32, 1444111885/32)]$
266175.v2 266175.v \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $16.29421372$ $[1, -1, 1, -554817230, -5029919477228]$ \(y^2+xy+y=x^3-x^2-554817230x-5029919477228\) 2.3.0.a.1, 156.6.0.?, 210.6.0.?, 1820.6.0.?, 5460.12.0.? $[(263619703/19, 4275465530864/19)]$
266175.w1 266175.w \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $0.743783097$ $[1, -1, 1, -7130, 947522]$ \(y^2+xy+y=x^3-x^2-7130x+947522\) 1092.2.0.? $[(49, 820), (114, 1210)]$
266175.x1 266175.x \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.527485594$ $[1, -1, 1, -1616855, -784420828]$ \(y^2+xy+y=x^3-x^2-1616855x-784420828\) 12.2.0.a.1 $[(4014, 237550)]$
266175.y1 266175.y \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.986057270$ $[1, -1, 1, -177755, -17812128]$ \(y^2+xy+y=x^3-x^2-177755x-17812128\) 2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? $[(-201, 3225)]$
266175.y2 266175.y \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.993028635$ $[1, -1, 1, -75380, 7781622]$ \(y^2+xy+y=x^3-x^2-75380x+7781622\) 2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? $[(114, 755)]$
266175.z1 266175.z \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.332861865$ $[1, -1, 1, 15685, 119533132]$ \(y^2+xy+y=x^3-x^2+15685x+119533132\) 1092.2.0.? $[(-1585/2, 58703/2)]$
266175.ba1 266175.ba \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.932045934$ $[1, -1, 1, -19805, 854572]$ \(y^2+xy+y=x^3-x^2-19805x+854572\) 2.3.0.a.1, 12.6.0.c.1, 364.6.0.?, 546.6.0.?, 1092.12.0.? $[(-26, 1175)]$
266175.ba2 266175.ba \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.466022967$ $[1, -1, 1, 43570, 5164072]$ \(y^2+xy+y=x^3-x^2+43570x+5164072\) 2.3.0.a.1, 6.6.0.a.1, 364.6.0.?, 1092.12.0.? $[(-16, 2120)]$
266175.bb1 266175.bb \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -177583880, 910906409872]$ \(y^2+xy+y=x^3-x^2-177583880x+910906409872\) 2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 140.12.0.?, 156.12.0.?, $\ldots$ $[ ]$
266175.bb2 266175.bb \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -11224505, 13896659872]$ \(y^2+xy+y=x^3-x^2-11224505x+13896659872\) 2.6.0.a.1, 60.12.0-2.a.1.1, 84.12.0.?, 140.12.0.?, 156.12.0.?, $\ldots$ $[ ]$
266175.bb3 266175.bb \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -1908380, -729656378]$ \(y^2+xy+y=x^3-x^2-1908380x-729656378\) 2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.2, 130.6.0.?, 156.12.0.?, $\ldots$ $[ ]$
266175.bb4 266175.bb \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 6076870, 52859356372]$ \(y^2+xy+y=x^3-x^2+6076870x+52859356372\) 2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.1, 168.12.0.?, 182.6.0.?, $\ldots$ $[ ]$
266175.bc1 266175.bc \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -98390, -8641538]$ \(y^2+xy+y=x^3-x^2-98390x-8641538\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 48.24.0.l.2, 56.24.0.dm.1, $\ldots$ $[ ]$
266175.bc2 266175.bc \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 15685, -884438]$ \(y^2+xy+y=x^3-x^2+15685x-884438\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 28.12.0.n.1, 30.6.0.a.1, $\ldots$ $[ ]$
266175.bd1 266175.bd \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -641615630, -6255269584378]$ \(y^2+xy+y=x^3-x^2-641615630x-6255269584378\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.3, 60.12.0-4.c.1.2, 156.12.0.?, $\ldots$ $[ ]$
266175.bd2 266175.bd \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 1, -41010755, -93063566878]$ \(y^2+xy+y=x^3-x^2-41010755x-93063566878\) 2.6.0.a.1, 28.12.0-2.a.1.2, 60.12.0-2.a.1.1, 156.12.0.?, 260.12.0.?, $\ldots$ $[ ]$
266175.bd3 266175.bd \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -8879630, 8535050372]$ \(y^2+xy+y=x^3-x^2-8879630x+8535050372\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.3, 120.12.0.?, 210.6.0.?, $\ldots$ $[ ]$
266175.bd4 266175.bd \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 45496120, -433554626878]$ \(y^2+xy+y=x^3-x^2+45496120x-433554626878\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.3, 60.12.0-4.c.1.1, 312.12.0.?, $\ldots$ $[ ]$
266175.be1 266175.be \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.354403718$ $[1, -1, 1, -149090, 20975712]$ \(y^2+xy+y=x^3-x^2-149090x+20975712\) 2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? $[(270, 456)]$
266175.be2 266175.be \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.708807437$ $[1, -1, 1, 117085, 87519462]$ \(y^2+xy+y=x^3-x^2+117085x+87519462\) 2.3.0.a.1, 70.6.0.a.1, 260.6.0.?, 364.6.0.?, 1820.12.0.? $[(-315, 4551)]$
266175.bf1 266175.bf \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $18.69794028$ $[1, -1, 1, -44414246480, 3602672957983272]$ \(y^2+xy+y=x^3-x^2-44414246480x+3602672957983272\) 2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? $[(42745149416/643, 2848323424102965/643)]$
266175.bf2 266175.bf \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $37.39588057$ $[1, -1, 1, -2873645105, 52114677259272]$ \(y^2+xy+y=x^3-x^2-2873645105x+52114677259272\) 2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? $[(147891445996418894/2612509, 2373824140781712110893950/2612509)]$
266175.bg1 266175.bg \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -239180, -44593428]$ \(y^2+xy+y=x^3-x^2-239180x-44593428\) 12.2.0.a.1 $[ ]$
266175.bh1 266175.bh \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -75380, 27687872]$ \(y^2+xy+y=x^3-x^2-75380x+27687872\) 420.2.0.? $[ ]$
266175.bi1 266175.bi \( 3^{2} \cdot 5^{2} \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -13974980, 20677083522]$ \(y^2+xy+y=x^3-x^2-13974980x+20677083522\) 70.2.0.a.1 $[ ]$
Next   displayed columns for results