Properties

Label 265200.v
Number of curves 2
Conductor 265200
CM no
Rank 2
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("265200.v1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 265200.v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
265200.v1 265200v1 [0, -1, 0, -8908, 325312] [2] 344064 \(\Gamma_0(N)\)-optimal
265200.v2 265200v2 [0, -1, 0, -4408, 649312] [2] 688128  

Rank

sage: E.rank()
 

The elliptic curves in class 265200.v have rank \(2\).

Modular form 265200.2.a.v

sage: E.q_eigenform(10)
 
\( q - q^{3} - 2q^{7} + q^{9} - 4q^{11} - q^{13} + q^{17} + 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.