Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([0, -1, 0, -40958, 3232287]); // or

magma: E := EllipticCurve("265200l1");

sage: E = EllipticCurve([0, -1, 0, -40958, 3232287]) # or

sage: E = EllipticCurve("265200l1")

gp: E = ellinit([0, -1, 0, -40958, 3232287]) \\ or

gp: E = ellinit("265200l1")

$$y^2 = x^{3} - x^{2} - 40958 x + 3232287$$

## Mordell-Weil group structure

$$\Z^2$$

### Infinite order Mordell-Weil generators and heights

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(81, 663\right)$$ $$\left(217, 2125\right)$$ $$\hat{h}(P)$$ ≈ 1.55468429997 0.969163599128

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$(81,\pm 663)$$, $$(217,\pm 2125)$$

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E) Conductor: $$265200$$ = $$2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$-77840343750000$$ = $$-1 \cdot 2^{4} \cdot 3 \cdot 5^{9} \cdot 13^{2} \cdot 17^{3}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$-\frac{243164694272}{2490891}$$ = $$-1 \cdot 2^{8} \cdot 3^{-1} \cdot 13^{-2} \cdot 17^{-3} \cdot 983^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$2$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$1.46249043654$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega Real period: $$0.613665555328$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]] Tamagawa product: $$12$$  = $$1\cdot1\cdot2\cdot2\cdot3$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E) Torsion order: $$1$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

#### Modular form 265200.2.a.l

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

$$q - q^{3} - 3q^{7} + q^{9} - 3q^{11} - q^{13} + q^{17} - 3q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 875520 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

$$L^{(2)}(E,1)/2!$$ ≈ $$10.7697600708$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$1$$ $$II$$ Additive -1 4 4 0
$$3$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$5$$ $$2$$ $$III^{*}$$ Additive -1 2 9 0
$$13$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$17$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has no rational isogenies. Its isogeny class 265200.l consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.1.255.1 $$\Z/2\Z$$ Not in database
6 6.0.16581375.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.