Properties

Label 26520.p
Number of curves $1$
Conductor $26520$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 26520.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
26520.p1 26520x1 \([0, -1, 0, -460, 4105]\) \(-674250071296/31416255\) \(-502660080\) \([]\) \(13440\) \(0.43289\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 26520.p1 has rank \(1\).

Complex multiplication

The elliptic curves in class 26520.p do not have complex multiplication.

Modular form 26520.2.a.p

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + 3 q^{7} + q^{9} + q^{11} + q^{13} - q^{15} + q^{17} - 7 q^{19} + O(q^{20})\)  Toggle raw display