Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
26520.a1 |
26520k1 |
26520.a |
26520k |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{5} \cdot 13^{2} \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$624000$ |
$2.103233$ |
$-11955176777615838640384/182216460684375$ |
$[0, -1, 0, -1200376, -505808999]$ |
\(y^2=x^3-x^2-1200376x-505808999\) |
26520.b1 |
26520o1 |
26520.b |
26520o |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{4} \cdot 5 \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$1.807081353$ |
$1$ |
|
$5$ |
$7168$ |
$0.263137$ |
$19545784144/89505$ |
$[0, -1, 0, -356, -2460]$ |
\(y^2=x^3-x^2-356x-2460\) |
26520.b2 |
26520o2 |
26520.b |
26520o |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{10} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$0.903540676$ |
$1$ |
|
$7$ |
$14336$ |
$0.609711$ |
$-592143556/10989225$ |
$[0, -1, 0, -176, -5124]$ |
\(y^2=x^3-x^2-176x-5124\) |
26520.c1 |
26520j1 |
26520.c |
26520j |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3 \cdot 5^{7} \cdot 13 \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$25536$ |
$0.623630$ |
$5872987136/51796875$ |
$[0, -1, 0, 239, -5435]$ |
\(y^2=x^3-x^2+239x-5435\) |
26520.d1 |
26520l1 |
26520.d |
26520l |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3 \cdot 5^{3} \cdot 13^{4} \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.393331902$ |
$1$ |
|
$4$ |
$65280$ |
$1.439331$ |
$1783774976/15207200916375$ |
$[0, -1, 0, 64, 750465]$ |
\(y^2=x^3-x^2+64x+750465\) |
26520.e1 |
26520n1 |
26520.e |
26520n |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$0.535714367$ |
$1$ |
|
$7$ |
$4096$ |
$0.090633$ |
$5266130944/845325$ |
$[0, -1, 0, -91, 316]$ |
\(y^2=x^3-x^2-91x+316\) |
26520.e2 |
26520n2 |
26520.e |
26520n |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3 \cdot 5^{4} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1.071428734$ |
$1$ |
|
$5$ |
$8192$ |
$0.437206$ |
$1893932336/5386875$ |
$[0, -1, 0, 164, 1540]$ |
\(y^2=x^3-x^2+164x+1540\) |
26520.f1 |
26520a1 |
26520.f |
26520a |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3 \cdot 5 \cdot 13^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.402607252$ |
$1$ |
|
$0$ |
$17280$ |
$0.657436$ |
$234367644416/1230836295$ |
$[0, -1, 0, 324, 6261]$ |
\(y^2=x^3-x^2+324x+6261\) |
26520.g1 |
26520m1 |
26520.g |
26520m |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{11} \cdot 3^{3} \cdot 5 \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3.413194698$ |
$1$ |
|
$2$ |
$7680$ |
$0.178265$ |
$13935742/29835$ |
$[0, -1, 0, 64, 300]$ |
\(y^2=x^3-x^2+64x+300\) |
26520.h1 |
26520p4 |
26520.h |
26520p |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{11} \cdot 3^{4} \cdot 5^{8} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.102 |
2B |
$1$ |
$16$ |
$2$ |
$1$ |
$720896$ |
$2.427048$ |
$52862679907533400952738/90903515625$ |
$[0, -1, 0, -9929296, -12039444404]$ |
\(y^2=x^3-x^2-9929296x-12039444404\) |
26520.h2 |
26520p2 |
26520.h |
26520p |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{4} \cdot 13^{4} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.4 |
2Cs |
$1$ |
$4$ |
$2$ |
$3$ |
$360448$ |
$2.080475$ |
$25836234020391349156/33847087730625$ |
$[0, -1, 0, -620776, -187836740]$ |
\(y^2=x^3-x^2-620776x-187836740\) |
26520.h3 |
26520p3 |
26520.h |
26520p |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{11} \cdot 3^{16} \cdot 5^{2} \cdot 13^{2} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.59 |
2B |
$1$ |
$4$ |
$2$ |
$1$ |
$720896$ |
$2.427048$ |
$-4979252943420552578/15190164405108225$ |
$[0, -1, 0, -451776, -292549140]$ |
\(y^2=x^3-x^2-451776x-292549140\) |
26520.h4 |
26520p1 |
26520.h |
26520p |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 13^{8} \cdot 17 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.53 |
2B |
$1$ |
$1$ |
|
$3$ |
$180224$ |
$1.733902$ |
$52575237512036944/28081530070425$ |
$[0, -1, 0, -49556, -1162044]$ |
\(y^2=x^3-x^2-49556x-1162044\) |
26520.i1 |
26520q1 |
26520.i |
26520q |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5 \cdot 13 \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$28224$ |
$0.847345$ |
$937470577664/698407515$ |
$[0, -1, 0, 1295, -10043]$ |
\(y^2=x^3-x^2+1295x-10043\) |
26520.j1 |
26520v1 |
26520.j |
26520v |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{11} \cdot 3 \cdot 5^{13} \cdot 13 \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.029660664$ |
$1$ |
|
$2$ |
$299520$ |
$2.084068$ |
$-152796558778456322/233895263671875$ |
$[0, -1, 0, -141440, -39042900]$ |
\(y^2=x^3-x^2-141440x-39042900\) |
26520.k1 |
26520r1 |
26520.k |
26520r |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13^{5} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$506880$ |
$2.327694$ |
$203769809659907949070336/2016474841511325$ |
$[0, -1, 0, -3089195, -2088807468]$ |
\(y^2=x^3-x^2-3089195x-2088807468\) |
26520.k2 |
26520r2 |
26520.k |
26520r |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3 \cdot 5^{4} \cdot 13^{10} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$1013760$ |
$2.674271$ |
$-11845731628994222232016/1269935194601506875$ |
$[0, -1, 0, -3015500, -2193277500]$ |
\(y^2=x^3-x^2-3015500x-2193277500\) |
26520.l1 |
26520w1 |
26520.l |
26520w |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{16} \cdot 5 \cdot 13 \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.21 |
2B |
$3.244290416$ |
$1$ |
|
$3$ |
$184320$ |
$1.755075$ |
$402876451435348816/13746755117745$ |
$[0, -1, 0, -97700, -11369820]$ |
\(y^2=x^3-x^2-97700x-11369820\) |
26520.l2 |
26520w2 |
26520.l |
26520w |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{10} \cdot 3^{8} \cdot 5^{2} \cdot 13^{2} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.12 |
2B |
$1.622145208$ |
$1$ |
|
$3$ |
$368640$ |
$2.101650$ |
$4067455675907516/669098843633025$ |
$[0, -1, 0, 33520, -39765828]$ |
\(y^2=x^3-x^2+33520x-39765828\) |
26520.m1 |
26520s6 |
26520.m |
26520s |
$6$ |
$8$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{11} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.47 |
2B |
$10.88483541$ |
$4$ |
$2$ |
$1$ |
$786432$ |
$2.523815$ |
$2533559197411478296569602/845325$ |
$[0, -1, 0, -36067200, -83359313748]$ |
\(y^2=x^3-x^2-36067200x-83359313748\) |
26520.m2 |
26520s4 |
26520.m |
26520s |
$6$ |
$8$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{4} \cdot 5^{4} \cdot 13^{2} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.33 |
2Cs |
$5.442417708$ |
$1$ |
|
$5$ |
$393216$ |
$2.177238$ |
$1237089966354690271204/714574355625$ |
$[0, -1, 0, -2254200, -1301925348]$ |
\(y^2=x^3-x^2-2254200x-1301925348\) |
26520.m3 |
26520s5 |
26520.m |
26520s |
$6$ |
$8$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{11} \cdot 3^{8} \cdot 5^{2} \cdot 13 \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.178 |
2B |
$10.88483541$ |
$1$ |
|
$1$ |
$786432$ |
$2.523815$ |
$-607905111321334101602/14874581985380325$ |
$[0, -1, 0, -2241200, -1317696948]$ |
\(y^2=x^3-x^2-2241200x-1317696948\) |
26520.m4 |
26520s3 |
26520.m |
26520s |
$6$ |
$8$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3 \cdot 5^{16} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.31 |
2B |
$5.442417708$ |
$1$ |
|
$5$ |
$393216$ |
$2.177238$ |
$3346154465291614084/1315155029296875$ |
$[0, -1, 0, -314080, 38479900]$ |
\(y^2=x^3-x^2-314080x+38479900\) |
26520.m5 |
26520s2 |
26520.m |
26520s |
$6$ |
$8$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{8} \cdot 13^{4} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.27 |
2Cs |
$2.721208854$ |
$1$ |
|
$15$ |
$196608$ |
$1.830666$ |
$1229125878116884816/29018422265625$ |
$[0, -1, 0, -141700, -20060348]$ |
\(y^2=x^3-x^2-141700x-20060348\) |
26520.m6 |
26520s1 |
26520.m |
26520s |
$6$ |
$8$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3 \cdot 5^{4} \cdot 13^{8} \cdot 17 \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.162 |
2B |
$5.442417708$ |
$1$ |
|
$3$ |
$98304$ |
$1.484093$ |
$9317458724864/26001416731875$ |
$[0, -1, 0, 1105, -981600]$ |
\(y^2=x^3-x^2+1105x-981600\) |
26520.n1 |
26520u2 |
26520.n |
26520u |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{4} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$0.992402309$ |
$1$ |
|
$7$ |
$61440$ |
$1.305651$ |
$34780972302198736/1711783125$ |
$[0, -1, 0, -43180, -3439100]$ |
\(y^2=x^3-x^2-43180x-3439100\) |
26520.n2 |
26520u1 |
26520.n |
26520u |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{8} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1.984804619$ |
$1$ |
|
$5$ |
$30720$ |
$0.959078$ |
$-115331093579776/30301171875$ |
$[0, -1, 0, -2555, -59100]$ |
\(y^2=x^3-x^2-2555x-59100\) |
26520.o1 |
26520t1 |
26520.o |
26520t |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{11} \cdot 3^{9} \cdot 5 \cdot 13^{9} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.928616293$ |
$1$ |
|
$2$ |
$24675840$ |
$4.327888$ |
$-41788232654067676478925951960962/428246593676749551934035$ |
$[0, -1, 0, -9180931520, 338599261236780]$ |
\(y^2=x^3-x^2-9180931520x+338599261236780\) |
26520.p1 |
26520x1 |
26520.p |
26520x |
$1$ |
$1$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{7} \cdot 5 \cdot 13^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.881612103$ |
$1$ |
|
$4$ |
$13440$ |
$0.432888$ |
$-674250071296/31416255$ |
$[0, -1, 0, -460, 4105]$ |
\(y^2=x^3-x^2-460x+4105\) |
26520.q1 |
26520b4 |
26520.q |
26520b |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{11} \cdot 3^{3} \cdot 5^{4} \cdot 13 \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$16$ |
$2$ |
$1$ |
$122880$ |
$1.527853$ |
$891190736491222802/3729375$ |
$[0, -1, 0, -254600, -49361748]$ |
\(y^2=x^3-x^2-254600x-49361748\) |
26520.q2 |
26520b2 |
26520.q |
26520b |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{6} \cdot 5^{2} \cdot 13^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1$ |
$4$ |
$2$ |
$3$ |
$61440$ |
$1.181278$ |
$435792975088324/890127225$ |
$[0, -1, 0, -15920, -766500]$ |
\(y^2=x^3-x^2-15920x-766500\) |
26520.q3 |
26520b3 |
26520.q |
26520b |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{11} \cdot 3^{3} \cdot 5 \cdot 13^{4} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$16$ |
$2$ |
$1$ |
$122880$ |
$1.527853$ |
$-62875617222962/322034842935$ |
$[0, -1, 0, -10520, -1300020]$ |
\(y^2=x^3-x^2-10520x-1300020\) |
26520.q4 |
26520b1 |
26520.q |
26520b |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{12} \cdot 5 \cdot 13 \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$4$ |
$2$ |
$1$ |
$30720$ |
$0.834705$ |
$1040212820176/587242305$ |
$[0, -1, 0, -1340, -2508]$ |
\(y^2=x^3-x^2-1340x-2508\) |
26520.r1 |
26520ba4 |
26520.r |
26520ba |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{5} \cdot 5 \cdot 13 \cdot 17^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2.356542551$ |
$1$ |
|
$15$ |
$204800$ |
$1.688400$ |
$4135530531909359236/1319214195$ |
$[0, 1, 0, -337056, 75206160]$ |
\(y^2=x^3+x^2-337056x+75206160\) |
26520.r2 |
26520ba3 |
26520.r |
26520ba |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{20} \cdot 5 \cdot 13 \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$2.356542551$ |
$1$ |
|
$11$ |
$204800$ |
$1.688400$ |
$8741236393854436/3852896763105$ |
$[0, 1, 0, -43256, -1704960]$ |
\(y^2=x^3+x^2-43256x-1704960\) |
26520.r3 |
26520ba2 |
26520.r |
26520ba |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{2} \cdot 13^{2} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$0.589135637$ |
$1$ |
|
$47$ |
$102400$ |
$1.341827$ |
$4090768940651344/72100305225$ |
$[0, 1, 0, -21156, 1159200]$ |
\(y^2=x^3+x^2-21156x+1159200\) |
26520.r4 |
26520ba1 |
26520.r |
26520ba |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{4} \cdot 3^{5} \cdot 5^{4} \cdot 13^{4} \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$0.589135637$ |
$1$ |
|
$25$ |
$51200$ |
$0.995253$ |
$-212629504/73740931875$ |
$[0, 1, 0, -31, 52250]$ |
\(y^2=x^3+x^2-31x+52250\) |
26520.s1 |
26520e4 |
26520.s |
26520e |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{11} \cdot 3^{2} \cdot 5^{12} \cdot 13^{3} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$9.815981244$ |
$1$ |
|
$1$ |
$1327104$ |
$2.703133$ |
$699782572199712476018/403188655517578125$ |
$[0, 1, 0, -2348856, -92595600]$ |
\(y^2=x^3+x^2-2348856x-92595600\) |
26520.s2 |
26520e2 |
26520.s |
26520e |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{4} \cdot 5^{6} \cdot 13^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$4.907990622$ |
$1$ |
|
$7$ |
$663552$ |
$2.356560$ |
$408387906477526456516/1765480810640625$ |
$[0, 1, 0, -1557936, 745146864]$ |
\(y^2=x^3+x^2-1557936x+745146864\) |
26520.s3 |
26520e1 |
26520.s |
26520e |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{8} \cdot 5^{3} \cdot 13^{3} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$2.453995311$ |
$1$ |
|
$5$ |
$331776$ |
$2.009987$ |
$1628461040201585189584/30630848625$ |
$[0, 1, 0, -1556316, 746781120]$ |
\(y^2=x^3+x^2-1556316x+746781120\) |
26520.s4 |
26520e3 |
26520.s |
26520e |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{11} \cdot 3^{2} \cdot 5^{3} \cdot 13^{12} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$9.815981244$ |
$4$ |
$2$ |
$3$ |
$1327104$ |
$2.703133$ |
$-26922086450129858258/445575877967449125$ |
$[0, 1, 0, -792936, 1478322864]$ |
\(y^2=x^3+x^2-792936x+1478322864\) |
26520.t1 |
26520g1 |
26520.t |
26520g |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{4} \cdot 13 \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$16384$ |
$0.647492$ |
$134742996281344/21133125$ |
$[0, 1, 0, -2691, -54630]$ |
\(y^2=x^3+x^2-2691x-54630\) |
26520.t2 |
26520g2 |
26520.t |
26520g |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3 \cdot 5^{8} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$4$ |
$2$ |
$1$ |
$32768$ |
$0.994066$ |
$-6247321674064/3366796875$ |
$[0, 1, 0, -2436, -65136]$ |
\(y^2=x^3+x^2-2436x-65136\) |
26520.u1 |
26520y1 |
26520.u |
26520y |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{4} \cdot 5^{4} \cdot 13^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1.748694602$ |
$1$ |
|
$3$ |
$184320$ |
$1.892763$ |
$2396726313900986596/4154072495625$ |
$[0, 1, 0, -281016, 57158784]$ |
\(y^2=x^3+x^2-281016x+57158784\) |
26520.u2 |
26520y2 |
26520.u |
26520y |
$2$ |
$2$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{11} \cdot 3^{8} \cdot 5^{8} \cdot 13^{3} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3.497389205$ |
$1$ |
|
$3$ |
$368640$ |
$2.239338$ |
$-389032340685029858/1627263833203125$ |
$[0, 1, 0, -193136, 93646560]$ |
\(y^2=x^3+x^2-193136x+93646560\) |
26520.v1 |
26520c4 |
26520.v |
26520c |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{11} \cdot 3^{2} \cdot 5 \cdot 13^{4} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.7 |
2B |
$4.761464473$ |
$4$ |
$2$ |
$1$ |
$49152$ |
$1.194866$ |
$1887517194957938/21849165$ |
$[0, 1, 0, -32696, -2286480]$ |
\(y^2=x^3+x^2-32696x-2286480\) |
26520.v2 |
26520c2 |
26520.v |
26520c |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{4} \cdot 5^{2} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.1 |
2Cs |
$2.380732236$ |
$1$ |
|
$7$ |
$24576$ |
$0.848292$ |
$994958062276/98903025$ |
$[0, 1, 0, -2096, -34320]$ |
\(y^2=x^3+x^2-2096x-34320\) |
26520.v3 |
26520c1 |
26520.v |
26520c |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{8} \cdot 5 \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.12 |
2B |
$1.190366118$ |
$1$ |
|
$5$ |
$12288$ |
$0.501719$ |
$46689225424/7249905$ |
$[0, 1, 0, -476, 3264]$ |
\(y^2=x^3+x^2-476x+3264\) |
26520.v4 |
26520c3 |
26520.v |
26520c |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( - 2^{11} \cdot 3^{2} \cdot 5^{4} \cdot 13 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.8 |
2B |
$4.761464473$ |
$1$ |
|
$3$ |
$49152$ |
$1.194866$ |
$931329171502/6107473125$ |
$[0, 1, 0, 2584, -161616]$ |
\(y^2=x^3+x^2+2584x-161616\) |
26520.w1 |
26520z4 |
26520.w |
26520z |
$4$ |
$4$ |
\( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{4} \cdot 5 \cdot 13 \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$4$ |
$2$ |
$1$ |
$36864$ |
$0.987700$ |
$1415313160121956/89505$ |
$[0, 1, 0, -23576, -1401216]$ |
\(y^2=x^3+x^2-23576x-1401216\) |