Properties

Label 2646.p
Number of curves $1$
Conductor $2646$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2646.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2646.p1 2646bd1 \([1, -1, 1, 194398, -13576895]\) \(38983348653/26353376\) \(-549235120850202528\) \([]\) \(60480\) \(2.0926\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2646.p1 has rank \(0\).

Complex multiplication

The elliptic curves in class 2646.p do not have complex multiplication.

Modular form 2646.2.a.p

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 4q^{5} + q^{8} - 4q^{10} - 4q^{11} - 3q^{13} + q^{16} + 7q^{17} - 2q^{19} + O(q^{20})\)  Toggle raw display