Properties

Label 2646.k
Number of curves $1$
Conductor $2646$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("k1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2646.k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2646.k1 2646j1 \([1, -1, 0, -891, 10597]\) \(-134162931/2048\) \(-1194891264\) \([]\) \(1980\) \(0.54438\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2646.k1 has rank \(0\).

Complex multiplication

The elliptic curves in class 2646.k do not have complex multiplication.

Modular form 2646.2.a.k

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 2 q^{5} - q^{8} - 2 q^{10} - 5 q^{11} + 6 q^{13} + q^{16} + 4 q^{17} - 4 q^{19} + O(q^{20})\)  Toggle raw display