Properties

Label 2646.d
Number of curves $1$
Conductor $2646$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2646.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2646.d1 2646c1 \([1, -1, 0, -17943, 1181501]\) \(-89373/32\) \(-228752653415328\) \([]\) \(10080\) \(1.4661\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2646.d1 has rank \(0\).

Complex multiplication

The elliptic curves in class 2646.d do not have complex multiplication.

Modular form 2646.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2q^{5} - q^{8} + 2q^{10} + 2q^{11} + q^{13} + q^{16} + 3q^{17} + 4q^{19} + O(q^{20})\)  Toggle raw display