Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
2646.a1 |
2646g3 |
2646.a |
2646g |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{11} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.4 |
3B |
$1$ |
$1$ |
|
$0$ |
$6804$ |
$1.207056$ |
$-1167051/512$ |
$[1, -1, 0, -6036, 240848]$ |
\(y^2+xy=x^3-x^2-6036x+240848\) |
2646.a2 |
2646g1 |
2646.a |
2646g |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2 \cdot 3^{3} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.5 |
3B |
$1$ |
$1$ |
|
$0$ |
$756$ |
$0.108444$ |
$-132651/2$ |
$[1, -1, 0, -156, -722]$ |
\(y^2+xy=x^3-x^2-156x-722\) |
2646.a3 |
2646g2 |
2646.a |
2646g |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{3} \cdot 3^{9} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.1 |
3Cs |
$1$ |
$1$ |
|
$0$ |
$2268$ |
$0.657751$ |
$9261/8$ |
$[1, -1, 0, 579, -3907]$ |
\(y^2+xy=x^3-x^2+579x-3907\) |
2646.b1 |
2646k2 |
2646.b |
2646k |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{3} \cdot 3^{11} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$11340$ |
$1.409349$ |
$-10353819/8$ |
$[1, -1, 0, -45726, -3754612]$ |
\(y^2+xy=x^3-x^2-45726x-3754612\) |
2646.b2 |
2646k1 |
2646.b |
2646k |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2 \cdot 3^{9} \cdot 7^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$3780$ |
$0.860044$ |
$189/2$ |
$[1, -1, 0, 579, -22429]$ |
\(y^2+xy=x^3-x^2+579x-22429\) |
2646.c1 |
2646d1 |
2646.c |
2646d |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{11} \cdot 3^{5} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$13860$ |
$1.517336$ |
$-134162931/2048$ |
$[1, -1, 0, -43668, -3547440]$ |
\(y^2+xy=x^3-x^2-43668x-3547440\) |
2646.d1 |
2646c1 |
2646.d |
2646c |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{5} \cdot 3^{11} \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$10080$ |
$1.466068$ |
$-89373/32$ |
$[1, -1, 0, -17943, 1181501]$ |
\(y^2+xy=x^3-x^2-17943x+1181501\) |
2646.e1 |
2646n1 |
2646.e |
2646n |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{11} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.219190089$ |
$1$ |
|
$4$ |
$16128$ |
$1.758129$ |
$-33268701/256$ |
$[1, -1, 0, -129075, 17999477]$ |
\(y^2+xy=x^3-x^2-129075x+17999477\) |
2646.f1 |
2646l2 |
2646.f |
2646l |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2 \cdot 3^{5} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$3.818486457$ |
$1$ |
|
$2$ |
$5184$ |
$1.166840$ |
$-545407363875/14$ |
$[1, -1, 0, -52047, -4557281]$ |
\(y^2+xy=x^3-x^2-52047x-4557281\) |
2646.f2 |
2646l1 |
2646.f |
2646l |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{3} \cdot 3^{3} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$1.272828819$ |
$1$ |
|
$2$ |
$1728$ |
$0.617533$ |
$-7414875/2744$ |
$[1, -1, 0, -597, -7043]$ |
\(y^2+xy=x^3-x^2-597x-7043\) |
2646.f3 |
2646l3 |
2646.f |
2646l |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{9} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.424276273$ |
$1$ |
|
$4$ |
$5184$ |
$1.166840$ |
$4492125/3584$ |
$[1, -1, 0, 4548, 71504]$ |
\(y^2+xy=x^3-x^2+4548x+71504\) |
2646.g1 |
2646a1 |
2646.g |
2646a |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$864$ |
$0.163668$ |
$-637875/16$ |
$[1, -1, 0, -177, -883]$ |
\(y^2+xy=x^3-x^2-177x-883\) |
2646.g2 |
2646a2 |
2646.g |
2646a |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{11} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$2592$ |
$0.712974$ |
$5767125/4096$ |
$[1, -1, 0, 768, -4096]$ |
\(y^2+xy=x^3-x^2+768x-4096\) |
2646.h1 |
2646i1 |
2646.h |
2646i |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{4} \cdot 3^{9} \cdot 7^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$6048$ |
$1.136623$ |
$-637875/16$ |
$[1, -1, 0, -8682, 320228]$ |
\(y^2+xy=x^3-x^2-8682x+320228\) |
2646.h2 |
2646i2 |
2646.h |
2646i |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{11} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$18144$ |
$1.685928$ |
$5767125/4096$ |
$[1, -1, 0, 37623, 1329677]$ |
\(y^2+xy=x^3-x^2+37623x+1329677\) |
2646.i1 |
2646m1 |
2646.i |
2646m |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{2} \cdot 3^{5} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.868994067$ |
$1$ |
|
$4$ |
$1152$ |
$0.387307$ |
$-3/28$ |
$[1, -1, 0, -9, -1359]$ |
\(y^2+xy=x^3-x^2-9x-1359\) |
2646.j1 |
2646b1 |
2646.j |
2646b |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{11} \cdot 7^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$2304$ |
$0.785174$ |
$-33268701/256$ |
$[1, -1, 0, -2634, -51724]$ |
\(y^2+xy=x^3-x^2-2634x-51724\) |
2646.k1 |
2646j1 |
2646.k |
2646j |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{11} \cdot 3^{5} \cdot 7^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1980$ |
$0.544381$ |
$-134162931/2048$ |
$[1, -1, 0, -891, 10597]$ |
\(y^2+xy=x^3-x^2-891x+10597\) |
2646.l1 |
2646o1 |
2646.l |
2646o |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{5} \cdot 3^{11} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2.566130674$ |
$1$ |
|
$4$ |
$1440$ |
$0.493114$ |
$-89373/32$ |
$[1, -1, 0, -366, -3340]$ |
\(y^2+xy=x^3-x^2-366x-3340\) |
2646.m1 |
2646e2 |
2646.m |
2646e |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{3} \cdot 3^{11} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$1620$ |
$0.436395$ |
$-10353819/8$ |
$[1, -1, 0, -933, 11213]$ |
\(y^2+xy=x^3-x^2-933x+11213\) |
2646.m2 |
2646e1 |
2646.m |
2646e |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2 \cdot 3^{9} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$540$ |
$-0.112911$ |
$189/2$ |
$[1, -1, 0, 12, 62]$ |
\(y^2+xy=x^3-x^2+12x+62\) |
2646.n1 |
2646f1 |
2646.n |
2646f |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{2} \cdot 3^{3} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.765594$ |
$-11527859979/28$ |
$[1, -1, 0, -6918, -219752]$ |
\(y^2+xy=x^3-x^2-6918x-219752\) |
2646.n2 |
2646f2 |
2646.n |
2646f |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{9} \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$1$ |
$1$ |
|
$0$ |
$10368$ |
$1.314899$ |
$-5000211/21952$ |
$[1, -1, 0, -4713, -363763]$ |
\(y^2+xy=x^3-x^2-4713x-363763\) |
2646.n3 |
2646f3 |
2646.n |
2646f |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{18} \cdot 3^{11} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$31104$ |
$1.864206$ |
$381790581/1835008$ |
$[1, -1, 0, 41592, 8813888]$ |
\(y^2+xy=x^3-x^2+41592x+8813888\) |
2646.o1 |
2646h1 |
2646.o |
2646h |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{5} \cdot 3^{5} \cdot 7^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$20160$ |
$1.543322$ |
$38983348653/26353376$ |
$[1, -1, 0, 21600, 495648]$ |
\(y^2+xy=x^3-x^2+21600x+495648\) |
2646.p1 |
2646bd1 |
2646.p |
2646bd |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{5} \cdot 3^{11} \cdot 7^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$60480$ |
$2.092628$ |
$38983348653/26353376$ |
$[1, -1, 1, 194398, -13576895]$ |
\(y^2+xy+y=x^3-x^2+194398x-13576895\) |
2646.q1 |
2646v3 |
2646.q |
2646v |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{2} \cdot 3^{9} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.530137734$ |
$1$ |
|
$2$ |
$10368$ |
$1.314899$ |
$-11527859979/28$ |
$[1, -1, 1, -62264, 5995567]$ |
\(y^2+xy+y=x^3-x^2-62264x+5995567\) |
2646.q2 |
2646v1 |
2646.q |
2646v |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{3} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$0.176712578$ |
$1$ |
|
$6$ |
$3456$ |
$0.765594$ |
$-5000211/21952$ |
$[1, -1, 1, -524, 13647]$ |
\(y^2+xy+y=x^3-x^2-524x+13647\) |
2646.q3 |
2646v2 |
2646.q |
2646v |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{18} \cdot 3^{5} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.058904192$ |
$1$ |
|
$16$ |
$10368$ |
$1.314899$ |
$381790581/1835008$ |
$[1, -1, 1, 4621, -327981]$ |
\(y^2+xy+y=x^3-x^2+4621x-327981\) |
2646.r1 |
2646bc2 |
2646.r |
2646bc |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{3} \cdot 3^{5} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$540$ |
$-0.112911$ |
$-10353819/8$ |
$[1, -1, 1, -104, -381]$ |
\(y^2+xy+y=x^3-x^2-104x-381\) |
2646.r2 |
2646bc1 |
2646.r |
2646bc |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2 \cdot 3^{3} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1$ |
$1$ |
|
$0$ |
$180$ |
$-0.662217$ |
$189/2$ |
$[1, -1, 1, 1, -3]$ |
\(y^2+xy+y=x^3-x^2+x-3\) |
2646.s1 |
2646u1 |
2646.s |
2646u |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{5} \cdot 3^{5} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.058341937$ |
$1$ |
|
$12$ |
$480$ |
$-0.056192$ |
$-89373/32$ |
$[1, -1, 1, -41, 137]$ |
\(y^2+xy+y=x^3-x^2-41x+137\) |
2646.t1 |
2646p1 |
2646.t |
2646p |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{11} \cdot 3^{11} \cdot 7^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$5940$ |
$1.093687$ |
$-134162931/2048$ |
$[1, -1, 1, -8021, -278099]$ |
\(y^2+xy+y=x^3-x^2-8021x-278099\) |
2646.u1 |
2646t1 |
2646.u |
2646t |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{5} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.042653057$ |
$1$ |
|
$14$ |
$768$ |
$0.235868$ |
$-33268701/256$ |
$[1, -1, 1, -293, 2013]$ |
\(y^2+xy+y=x^3-x^2-293x+2013\) |
2646.v1 |
2646y1 |
2646.v |
2646y |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{2} \cdot 3^{11} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.936613$ |
$-3/28$ |
$[1, -1, 1, -83, 36775]$ |
\(y^2+xy+y=x^3-x^2-83x+36775\) |
2646.w1 |
2646s1 |
2646.w |
2646s |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.294927533$ |
$1$ |
|
$4$ |
$288$ |
$-0.385638$ |
$-637875/16$ |
$[1, -1, 1, -20, 39]$ |
\(y^2+xy+y=x^3-x^2-20x+39\) |
2646.w2 |
2646s2 |
2646.w |
2646s |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{5} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$0.098309177$ |
$1$ |
|
$10$ |
$864$ |
$0.163668$ |
$5767125/4096$ |
$[1, -1, 1, 85, 123]$ |
\(y^2+xy+y=x^3-x^2+85x+123\) |
2646.x1 |
2646w1 |
2646.x |
2646w |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$0.888679859$ |
$1$ |
|
$4$ |
$2016$ |
$0.587317$ |
$-637875/16$ |
$[1, -1, 1, -965, -11539]$ |
\(y^2+xy+y=x^3-x^2-965x-11539\) |
2646.x2 |
2646w2 |
2646.x |
2646w |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{5} \cdot 7^{8} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$2.666039579$ |
$1$ |
|
$6$ |
$6048$ |
$1.136623$ |
$5767125/4096$ |
$[1, -1, 1, 4180, -50641]$ |
\(y^2+xy+y=x^3-x^2+4180x-50641\) |
2646.y1 |
2646r3 |
2646.y |
2646r |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2 \cdot 3^{11} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$1.618609852$ |
$1$ |
|
$0$ |
$15552$ |
$1.716145$ |
$-545407363875/14$ |
$[1, -1, 1, -468425, 123515011]$ |
\(y^2+xy+y=x^3-x^2-468425x+123515011\) |
2646.y2 |
2646r2 |
2646.y |
2646r |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{3} \cdot 3^{9} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$0.539536617$ |
$1$ |
|
$4$ |
$5184$ |
$1.166840$ |
$-7414875/2744$ |
$[1, -1, 1, -5375, 195535]$ |
\(y^2+xy+y=x^3-x^2-5375x+195535\) |
2646.y3 |
2646r1 |
2646.y |
2646r |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{3} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$0.179845539$ |
$1$ |
|
$8$ |
$1728$ |
$0.617533$ |
$4492125/3584$ |
$[1, -1, 1, 505, -2817]$ |
\(y^2+xy+y=x^3-x^2+505x-2817\) |
2646.z1 |
2646x1 |
2646.z |
2646x |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{5} \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$5376$ |
$1.208824$ |
$-33268701/256$ |
$[1, -1, 1, -14342, -661867]$ |
\(y^2+xy+y=x^3-x^2-14342x-661867\) |
2646.ba1 |
2646z1 |
2646.ba |
2646z |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{5} \cdot 3^{5} \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$3360$ |
$0.916763$ |
$-89373/32$ |
$[1, -1, 1, -1994, -43095]$ |
\(y^2+xy+y=x^3-x^2-1994x-43095\) |
2646.bb1 |
2646ba1 |
2646.bb |
2646ba |
$1$ |
$1$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{11} \cdot 3^{11} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$41580$ |
$2.066643$ |
$-134162931/2048$ |
$[1, -1, 1, -393014, 96173893]$ |
\(y^2+xy+y=x^3-x^2-393014x+96173893\) |
2646.bc1 |
2646q2 |
2646.bc |
2646q |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{3} \cdot 3^{5} \cdot 7^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$3780$ |
$0.860044$ |
$-10353819/8$ |
$[1, -1, 1, -5081, 140753]$ |
\(y^2+xy+y=x^3-x^2-5081x+140753\) |
2646.bc2 |
2646q1 |
2646.bc |
2646q |
$2$ |
$3$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2 \cdot 3^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$1260$ |
$0.310738$ |
$189/2$ |
$[1, -1, 1, 64, 809]$ |
\(y^2+xy+y=x^3-x^2+64x+809\) |
2646.bd1 |
2646bb3 |
2646.bd |
2646bb |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2 \cdot 3^{9} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.5 |
3B |
$1$ |
$1$ |
|
$0$ |
$2268$ |
$0.657751$ |
$-132651/2$ |
$[1, -1, 1, -1406, 20899]$ |
\(y^2+xy+y=x^3-x^2-1406x+20899\) |
2646.bd2 |
2646bb2 |
2646.bd |
2646bb |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{5} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.4 |
3B |
$1$ |
$1$ |
|
$0$ |
$2268$ |
$0.657751$ |
$-1167051/512$ |
$[1, -1, 1, -671, -8697]$ |
\(y^2+xy+y=x^3-x^2-671x-8697\) |
2646.bd3 |
2646bb1 |
2646.bd |
2646bb |
$3$ |
$9$ |
\( 2 \cdot 3^{3} \cdot 7^{2} \) |
\( - 2^{3} \cdot 3^{3} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.1 |
3Cs |
$1$ |
$1$ |
|
$0$ |
$756$ |
$0.108444$ |
$9261/8$ |
$[1, -1, 1, 64, 123]$ |
\(y^2+xy+y=x^3-x^2+64x+123\) |