Properties

Label 262080j
Number of curves 2
Conductor 262080
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("262080.j1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 262080j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
262080.j2 262080j1 [0, 0, 0, -3468, 23312] [2] 294912 \(\Gamma_0(N)\)-optimal
262080.j1 262080j2 [0, 0, 0, -43788, 3523088] [2] 589824  

Rank

sage: E.rank()
 

The elliptic curves in class 262080j have rank \(1\).

Modular form 262080.2.a.j

sage: E.q_eigenform(10)
 
\( q - q^{5} - q^{7} - 4q^{11} - q^{13} - 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.