Properties

Label 262080.p
Number of curves 4
Conductor 262080
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("262080.p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 262080.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
262080.p1 262080p4 [0, 0, 0, -51611628, -142714943152] [2] 15728640  
262080.p2 262080p2 [0, 0, 0, -3227628, -2227160752] [2, 2] 7864320  
262080.p3 262080p3 [0, 0, 0, -2029548, -3901118128] [2] 15728640  
262080.p4 262080p1 [0, 0, 0, -278508, -5883568] [2] 3932160 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 262080.p have rank \(0\).

Modular form 262080.2.a.p

sage: E.q_eigenform(10)
 
\( q - q^{5} - q^{7} - 4q^{11} + q^{13} - 2q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.