# Properties

 Label 262080.l3 Conductor 262080 Discriminant 26756211550577240309760 j-invariant $$\frac{1296772724742600169}{140009392373760}$$ CM no Rank 1 Torsion Structure $$\Z/{2}\Z$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([0, 0, 0, -13085868, -16432837328]); // or

magma: E := EllipticCurve("262080l1");

sage: E = EllipticCurve([0, 0, 0, -13085868, -16432837328]) # or

sage: E = EllipticCurve("262080l1")

gp: E = ellinit([0, 0, 0, -13085868, -16432837328]) \\ or

gp: E = ellinit("262080l1")

$$y^2 = x^{3} - 13085868 x - 16432837328$$

## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(-\frac{9967}{4}, \frac{212121}{8}\right)$$ $$\hat{h}(P)$$ ≈ 4.51994107507

## Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(-2602, 0\right)$$

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(-2602, 0\right)$$, $$(62934,\pm 15761408)$$

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$262080$$ = $$2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$26756211550577240309760$$ = $$2^{34} \cdot 3^{10} \cdot 5 \cdot 7^{4} \cdot 13^{3}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{1296772724742600169}{140009392373760}$$ = $$2^{-16} \cdot 3^{-4} \cdot 5^{-1} \cdot 7^{-4} \cdot 13^{-3} \cdot 71^{3} \cdot 15359^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$1$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$4.51994107507$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$0.0799331848736$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$48$$  = $$2^{2}\cdot2\cdot1\cdot2\cdot3$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$2$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form 262080.2.a.l

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q - q^{5} - q^{7} - 4q^{11} + q^{13} - 6q^{17} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 18874368 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L'(E,1)$$ ≈ $$4.33551942686$$

## Local data

This elliptic curve is not semistable.

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$4$$ $$I_24^{*}$$ Additive 1 6 34 16
$$3$$ $$2$$ $$I_4^{*}$$ Additive -1 2 10 4
$$5$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$7$$ $$2$$ $$I_{4}$$ Non-split multiplicative 1 1 4 4
$$13$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ and has index 6.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 262080.l consists of 4 curves linked by isogenies of degrees dividing 4.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{-78})$$ $$\Z/4\Z$$ Not in database
$$\Q(\sqrt{-30})$$ $$\Z/4\Z$$ Not in database
$$\Q(\sqrt{65})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
4 $$\Q(\sqrt{-30}, \sqrt{65})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.