Properties

Label 262080.d
Number of curves 2
Conductor 262080
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("262080.d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 262080.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
262080.d1 262080d1 [0, 0, 0, -167268, 26104192] [2] 2064384 \(\Gamma_0(N)\)-optimal
262080.d2 262080d2 [0, 0, 0, -43788, 63790288] [2] 4128768  

Rank

sage: E.rank()
 

The elliptic curves in class 262080.d have rank \(1\).

Modular form 262080.2.a.d

sage: E.q_eigenform(10)
 
\( q - q^{5} - q^{7} - 6q^{11} - q^{13} + 4q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.