# Properties

 Label 262080.a Number of curves 2 Conductor 262080 CM no Rank 2 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("262080.a1")

sage: E.isogeny_class()

## Elliptic curves in class 262080.a

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
262080.a1 262080a1 [0, 0, 0, -948, -1888]  245760 $$\Gamma_0(N)$$-optimal
262080.a2 262080a2 [0, 0, 0, 3732, -14992]  491520

## Rank

sage: E.rank()

The elliptic curves in class 262080.a have rank $$2$$.

## Modular form 262080.2.a.a

sage: E.q_eigenform(10)

$$q - q^{5} - q^{7} - 6q^{11} - q^{13} - 6q^{17} + 2q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 