Learn more about

Refine search


Results (1-50 of 109 matches)

Next   Download to        
Curve Isogeny class
LMFDB label Cremona label LMFDB label Cremona label Weierstrass coefficients Rank Torsion structure
26010.a1 26010n1 26010.a 26010n $[1, -1, 0, 405, -167675]$ $0$ trivial
26010.b1 26010c4 26010.b 26010c $[1, -1, 0, -332115, -73583875]$ $1$ $[2]$
26010.b2 26010c3 26010.b 26010c $[1, -1, 0, -19995, -1234459]$ $1$ $[2]$
26010.b3 26010c2 26010.b 26010c $[1, -1, 0, -6990, 60550]$ $1$ $[2]$
26010.b4 26010c1 26010.b 26010c $[1, -1, 0, 1680, 6796]$ $1$ $[2]$
26010.c1 26010l2 26010.c 26010l $[1, -1, 0, -17273295, 28527146221]$ $0$ trivial
26010.c2 26010l1 26010.c 26010l $[1, -1, 0, 1037745, 126057325]$ $0$ trivial
26010.d1 26010m2 26010.d 26010m $[1, -1, 0, -405810, -88534134]$ $0$ $[2]$
26010.d2 26010m1 26010.d 26010m $[1, -1, 0, 36360, -7086420]$ $0$ $[2]$
26010.e1 26010a1 26010.e 26010a $[1, -1, 0, -1635, -52075]$ $1$ trivial
26010.f1 26010g2 26010.f 26010g $[1, -1, 0, -6427125, -5464532075]$ $0$ $[2]$
26010.f2 26010g1 26010.f 26010g $[1, -1, 0, 647595, -457045259]$ $0$ $[2]$
26010.g1 26010f4 26010.g 26010f $[1, -1, 0, -483840, 129389206]$ $0$ $[2]$
26010.g2 26010f3 26010.g 26010f $[1, -1, 0, -431820, -108643910]$ $0$ $[2]$
26010.g3 26010f2 26010.g 26010f $[1, -1, 0, -41670, 364000]$ $0$ $[2, 2]$
26010.g4 26010f1 26010.g 26010f $[1, -1, 0, 10350, 41476]$ $0$ $[2]$
26010.h1 26010h1 26010.h 26010h $[1, -1, 0, 4230, -98604]$ $0$ trivial
26010.i1 26010k1 26010.i 26010k $[1, -1, 0, -30083220, -63503437104]$ $0$ trivial
26010.j1 26010i1 26010.j 26010i $[1, -1, 0, -360, -3200]$ $0$ trivial
26010.j2 26010i2 26010.j 26010i $[1, -1, 0, 2700, 29236]$ $0$ trivial
26010.k1 26010j1 26010.k 26010j $[1, -1, 0, -474660, 125988696]$ $0$ trivial
26010.l1 26010b2 26010.l 26010b $[1, -1, 0, -384356760, 2900425560416]$ $1$ $[2]$
26010.l2 26010b1 26010.l 26010b $[1, -1, 0, -23546040, 47206548800]$ $1$ $[2]$
26010.m1 26010p1 26010.m 26010p $[1, -1, 0, 5953635, -28687300475]$ $1$ trivial
26010.n1 26010o4 26010.n 26010o $[1, -1, 0, -17013195, 27014039325]$ $0$ $[2]$
26010.n2 26010o2 26010.n 26010o $[1, -1, 0, -1095075, 395759061]$ $0$ $[2, 2]$
26010.n3 26010o1 26010.n 26010o $[1, -1, 0, -262755, -45204075]$ $0$ $[2]$
26010.n4 26010o3 26010.n 26010o $[1, -1, 0, 1505925, 1989131661]$ $0$ $[2]$
26010.o1 26010u1 26010.o 26010u $[1, -1, 0, 20601, -5843907]$ $1$ trivial
26010.p1 26010t4 26010.p 26010t $[1, -1, 0, -136305459, 612550853563]$ $1$ $[2]$
26010.p2 26010t3 26010.p 26010t $[1, -1, 0, -8518329, 9574501945]$ $1$ $[2]$
26010.p3 26010t2 26010.p 26010t $[1, -1, 0, -1703709, 818672413]$ $1$ $[2]$
26010.p4 26010t1 26010.p 26010t $[1, -1, 0, 64971, 50004085]$ $1$ $[2]$
26010.q1 26010w1 26010.q 26010w $[1, -1, 0, -137176794, 618433756348]$ $0$ trivial
26010.r1 26010v1 26010.r 26010v $[1, -1, 0, -104094, -16137900]$ $0$ trivial
26010.r2 26010v2 26010.r 26010v $[1, -1, 0, 780246, 146757528]$ $0$ $[3]$
26010.s1 26010x1 26010.s 26010x $[1, -1, 0, -104094, -12901100]$ $0$ trivial
26010.t1 26010s1 26010.t 26010s $[1, -1, 0, 1222416, -479551712]$ $1$ trivial
26010.u1 26010r8 26010.u 26010r $[1, -1, 0, -295135524, 1951617208518]$ $1$ $[2]$
26010.u2 26010r4 26010.u 26010r $[1, -1, 0, -56597814, -163874019132]$ $1$ $[2]$
26010.u3 26010r6 26010.u 26010r $[1, -1, 0, -18779274, 29338404768]$ $1$ $[2, 2]$
26010.u4 26010r3 26010.u 26010r $[1, -1, 0, -3745494, -2241553500]$ $1$ $[2, 2]$
26010.u5 26010r2 26010.u 26010r $[1, -1, 0, -3537414, -2559791052]$ $1$ $[2, 2]$
26010.u6 26010r1 26010.u 26010r $[1, -1, 0, -208134, -44852940]$ $1$ $[2]$
26010.u7 26010r5 26010.u 26010r $[1, -1, 0, 7959006, -13456805400]$ $1$ $[2]$
26010.u8 26010r7 26010.u 26010r $[1, -1, 0, 17036496, 127996524810]$ $1$ $[2]$
26010.v1 26010q2 26010.v 26010q $[1, -1, 0, -22239, -1107027]$ $1$ $[2]$
26010.v2 26010q1 26010.v 26010q $[1, -1, 0, 2241, -93555]$ $1$ $[2]$
26010.w1 26010e1 26010.w 26010e $[1, -1, 0, -472569, -257734675]$ $1$ trivial
26010.x1 26010y1 26010.x 26010y $[1, -1, 0, 116991, -823319235]$ $0$ trivial
Next   Download to