Properties

Label 2601.e
Number of curves $1$
Conductor $2601$
CM no
Rank $1$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("e1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2601.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2601.e1 2601b1 \([1, -1, 1, -29, 136]\) \(-459\) \(-5688387\) \([]\) \(432\) \(-0.015044\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2601.e1 has rank \(1\).

Complex multiplication

The elliptic curves in class 2601.e do not have complex multiplication.

Modular form 2601.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + 2q^{5} - q^{7} + 3q^{8} - 2q^{10} - 6q^{11} + q^{13} + q^{14} - q^{16} + 5q^{19} + O(q^{20})\)  Toggle raw display