⌂
→
Elliptic curves
→
$\Q$
→
2592
Citation
·
Feedback
·
Hide Menu
Elliptic curves over $\Q$ of conductor 2592
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Elliptic curve labels
Congruent number curves
Refine search
Advanced search options
Conductor
prime
p-power
sq-free
divides
Discriminant
j-invariant
Rank
Bad$\ p$
include
exclude
exactly
subset
Curves per isogeny class
Complex multiplication
Torsion
all
one
no potential CM
potential CM
CM field Q(sqrt(-1))
CM field Q(sqrt(-3))
CM field Q(sqrt(-7))
CM discriminant -3
CM discriminant -4
CM discriminant -7
CM discriminant -8
CM discriminant -11
CM discriminant -12
CM discriminant -16
CM discriminant -19
CM discriminant -27
CM discriminant -28
CM discriminant -43
CM discriminant -67
CM discriminant -163
trivial
order 4
order 8
order 12
ℤ/2ℤ
ℤ/3ℤ
ℤ/4ℤ
ℤ/5ℤ
ℤ/6ℤ
ℤ/7ℤ
ℤ/8ℤ
ℤ/9ℤ
ℤ/10ℤ
ℤ/12ℤ
ℤ/2ℤ⊕ℤ/2ℤ
ℤ/2ℤ⊕ℤ/4ℤ
ℤ/2ℤ⊕ℤ/6ℤ
ℤ/2ℤ⊕ℤ/8ℤ
Isogeny class degree
Cyclic isogeny degree
Isogeny class size
Integral points
Analytic order of Ш
$p\ $div$\ $|Ш|
include
exclude
exactly
subset
Regulator
Reduction
Faltings height
semistable
not semistable
potentially good
not potentially good
Galois image
Nonmax$\ \ell$
include
exclude
exactly
subset
Adelic level
Adelic index
Adelic genus
Sort order
Select
Search again
Random curve
▲ conductor
rank
torsion
CM discriminant
regulator
analytic Ш
isogeny class size
isogeny class degree
integral points
modular degree
adelic level
adelic index
adelic genus
Faltings height
columns to display
✓ LMFDB curve label
Cremona curve label
✓ LMFDB class label
Cremona class label
class size
class degree
✓ conductor
discriminant
✓ rank
✓ torsion
Qbar-end algebra
✓ CM discriminant
Sato-Tate group
semistable
potentially good
nonmaximal primes
ℓ-adic images
mod-ℓ images
adelic level
adelic index
adelic genus
regulator
analytic Ш
ш primes
integral points
modular degree
Faltings height
j-invariant
Weierstrass coeffs
✓ Weierstrass equation
mod-m images
show all
Results (8 matches)
Download displayed columns to
Pari/GP
SageMath
Magma
Oscar
Label
Cremona label
Class
Cremona class
Class size
Class degree
Conductor
Discriminant
Rank
Torsion
$\textrm{End}^0(E_{\overline\Q})$
CM
Sato-Tate
Semistable
Potentially good
Nonmax $\ell$
$\ell$-adic images
mod-$\ell$ images
Adelic level
Adelic index
Adelic genus
Regulator
$Ш_{\textrm{an}}$
Ш primes
Integral points
Modular degree
Faltings height
j-invariant
Weierstrass coefficients
Weierstrass equation
mod-$m$ images
2592.a1
2592h1
2592.a
2592h
$1$
$1$
\( 2^{5} \cdot 3^{4} \)
\( - 2^{9} \cdot 3^{10} \)
$1$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
✓
$2$
8.2.0.1
$8$
$2$
$0$
$0.238289242$
$1$
$6$
$720$
$0.116919$
$-72$
$[0, 0, 0, -27, 270]$
\(y^2=x^3-27x+270\)
8.2.0.a.1
2592.b1
2592d1
2592.b
2592d
$1$
$1$
\( 2^{5} \cdot 3^{4} \)
\( - 2^{9} \cdot 3^{10} \)
$0$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
✓
$2$
8.2.0.1
$8$
$2$
$0$
$1$
$1$
$0$
$720$
$0.116919$
$-72$
$[0, 0, 0, -27, -270]$
\(y^2=x^3-27x-270\)
8.2.0.a.1
2592.c1
2592f1
2592.c
2592f
$1$
$1$
\( 2^{5} \cdot 3^{4} \)
\( - 2^{12} \cdot 3^{10} \)
$0$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
✓
$2$
4.2.0.1
$24$
$4$
$0$
$1$
$1$
$0$
$576$
$0.299139$
$-576$
$[0, 0, 0, -108, -864]$
\(y^2=x^3-108x-864\)
4.2.0.a.1
,
24.4.0-4.a.1.1
2592.d1
2592b1
2592.d
2592b
$1$
$1$
\( 2^{5} \cdot 3^{4} \)
\( - 2^{12} \cdot 3^{10} \)
$1$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
✓
$2$
4.2.0.1
$24$
$4$
$0$
$0.169458710$
$1$
$8$
$576$
$0.299139$
$-576$
$[0, 0, 0, -108, 864]$
\(y^2=x^3-108x+864\)
4.2.0.a.1
,
24.4.0-4.a.1.1
2592.e1
2592a1
2592.e
2592a
$1$
$1$
\( 2^{5} \cdot 3^{4} \)
\( - 2^{12} \cdot 3^{4} \)
$1$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
✓
$2$
8.4.0.2
$8$
$4$
$0$
$0.298692440$
$1$
$4$
$192$
$-0.250167$
$-576$
$[0, 0, 0, -12, 32]$
\(y^2=x^3-12x+32\)
4.2.0.a.1
,
8.4.0-4.a.1.1
2592.f1
2592e1
2592.f
2592e
$1$
$1$
\( 2^{5} \cdot 3^{4} \)
\( - 2^{12} \cdot 3^{4} \)
$0$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
✓
$2$
8.4.0.2
$8$
$4$
$0$
$1$
$1$
$0$
$192$
$-0.250167$
$-576$
$[0, 0, 0, -12, -32]$
\(y^2=x^3-12x-32\)
4.2.0.a.1
,
8.4.0-4.a.1.1
2592.g1
2592c1
2592.g
2592c
$1$
$1$
\( 2^{5} \cdot 3^{4} \)
\( - 2^{9} \cdot 3^{4} \)
$1$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
✓
$2$
8.2.0.1
$8$
$2$
$0$
$1.181742469$
$1$
$2$
$240$
$-0.432387$
$-72$
$[0, 0, 0, -3, -10]$
\(y^2=x^3-3x-10\)
8.2.0.a.1
2592.h1
2592g1
2592.h
2592g
$1$
$1$
\( 2^{5} \cdot 3^{4} \)
\( - 2^{9} \cdot 3^{4} \)
$0$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
✓
$2$
8.2.0.1
$8$
$2$
$0$
$1$
$1$
$0$
$240$
$-0.432387$
$-72$
$[0, 0, 0, -3, 10]$
\(y^2=x^3-3x+10\)
8.2.0.a.1
Download displayed columns to
Pari/GP
SageMath
Magma
Oscar