Show commands for:
SageMath
sage: E = EllipticCurve("258.f1")
sage: E.isogeny_class()
Elliptic curves in class 258f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
258.f2 | 258f1 | [1, 0, 0, 159, 1737] | [7] | 168 | \(\Gamma_0(N)\)-optimal |
258.f1 | 258f2 | [1, 0, 0, -59901, -5648523] | [] | 1176 |
Rank
sage: E.rank()
The elliptic curves in class 258f have rank \(0\).
Modular form 258.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.