Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-1046x+825166\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-1046xz^2+825166z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-16731x+52793910\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-68, 794)$ | $1.4049178283737049431996579492$ | $\infty$ |
| $(166, 2198)$ | $1.8015143875078156712658656802$ | $\infty$ |
| $(-389/4, 385/8)$ | $0$ | $2$ |
Integral points
\( \left(-68, 794\right) \), \( \left(-68, -727\right) \), \( \left(-55, 872\right) \), \( \left(-55, -818\right) \), \( \left(166, 2198\right) \), \( \left(166, -2365\right) \), \( \left(209, 3010\right) \), \( \left(209, -3220\right) \), \( \left(553, 12728\right) \), \( \left(553, -13282\right) \), \( \left(842, 23999\right) \), \( \left(842, -24842\right) \), \( \left(15376, 1898885\right) \), \( \left(15376, -1914262\right) \)
Invariants
| Conductor: | $N$ | = | \( 25857 \) | = | $3^{2} \cdot 13^{2} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $-293888997662481$ | = | $-1 \cdot 3^{6} \cdot 13^{6} \cdot 17^{4} $ |
|
| j-invariant: | $j$ | = | \( -\frac{35937}{83521} \) | = | $-1 \cdot 3^{3} \cdot 11^{3} \cdot 17^{-4}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4551447021234797327669333350$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.37663612094134348095743300425$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1807067659885138$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.012582814175667$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.4012901108444593539087959005$ |
|
| Real period: | $\Omega$ | ≈ | $0.43967013581012037960351898368$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $4.2231021966179298570823306411 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.223102197 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.439670 \cdot 2.401290 \cdot 16}{2^2} \\ & \approx 4.223102197\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 73728 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $13$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $17$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | $\ell$-adic index |
|---|---|---|---|
| $2$ | 2B | 16.48.0.76 | $48$ |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 42432 = 2^{6} \cdot 3 \cdot 13 \cdot 17 \), index $1536$, genus $53$, and generators
$\left(\begin{array}{rr} 15406 & 12831 \\ 21411 & 18994 \end{array}\right),\left(\begin{array}{rr} 1 & 64 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 12481 & 3276 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 14143 & 0 \\ 0 & 42431 \end{array}\right),\left(\begin{array}{rr} 30655 & 24414 \\ 32526 & 12247 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 64 & 1 \end{array}\right),\left(\begin{array}{rr} 9 & 124 \\ 18164 & 5097 \end{array}\right),\left(\begin{array}{rr} 39167 & 0 \\ 0 & 42431 \end{array}\right),\left(\begin{array}{rr} 57 & 16 \\ 36080 & 40649 \end{array}\right),\left(\begin{array}{rr} 42369 & 64 \\ 42368 & 65 \end{array}\right)$.
The torsion field $K:=\Q(E[42432])$ is a degree-$403642100219904$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/42432\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 1521 = 3^{2} \cdot 13^{2} \) |
| $3$ | additive | $6$ | \( 2873 = 13^{2} \cdot 17 \) |
| $13$ | additive | $86$ | \( 153 = 3^{2} \cdot 17 \) |
| $17$ | nonsplit multiplicative | $18$ | \( 1521 = 3^{2} \cdot 13^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 25857i
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 17a1, its twist by $-39$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{39}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-39}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{39})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.151613669376.8 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.12662925279952896.99 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.3091534492176.6 | \(\Z/8\Z\) | not in database |
| $8$ | 8.2.5216964455547.2 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | add | ord | ord | ss | add | nonsplit | ord | ord | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 6 | - | 2 | 2 | 2,2 | - | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2,2 |
| $\mu$-invariant(s) | 1 | - | 0 | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.