Properties

 Label 258570.ef7 Conductor 258570 Discriminant 150971596771234213859740876800 j-invariant $$\frac{1018563973439611524445729}{42904970360310988800}$$ CM no Rank 1 Torsion Structure $$\Z/{2}\Z$$

Related objects

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([1, -1, 1, -3188238098, -66720369131503]); // or

magma: E := EllipticCurve("258570ef1");

sage: E = EllipticCurve([1, -1, 1, -3188238098, -66720369131503]) # or

sage: E = EllipticCurve("258570ef1")

gp: E = ellinit([1, -1, 1, -3188238098, -66720369131503]) \\ or

gp: E = ellinit("258570ef1")

$$y^2 + x y + y = x^{3} - x^{2} - 3188238098 x - 66720369131503$$

Mordell-Weil group structure

$$\Z\times \Z/{2}\Z$$

Infinite order Mordell-Weil generator and height

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(1536753, 1902976063\right)$$ $$\hat{h}(P)$$ ≈ 7.48727058835

Torsion generators

magma: TorsionSubgroup(E);

sage: E.torsion_subgroup().gens()

gp: elltors(E)

$$\left(-37599, 18799\right)$$

Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$\left(-37599, 18799\right)$$, $$\left(1536753, 1902976063\right)$$

Note: only one of each pair $\pm P$ is listed.

Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$258570$$ = $$2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 17$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$150971596771234213859740876800$$ = $$2^{24} \cdot 3^{12} \cdot 5^{2} \cdot 13^{10} \cdot 17^{3}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$\frac{1018563973439611524445729}{42904970360310988800}$$ = $$2^{-24} \cdot 3^{-6} \cdot 5^{-2} \cdot 11^{6} \cdot 13^{-4} \cdot 17^{-3} \cdot 831529^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$1$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$7.48727058835$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$0.020143734747$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$384$$  = $$( 2^{3} \cdot 3 )\cdot2\cdot2\cdot2^{2}\cdot1$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$2$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

Modular invariants

Modular form 258570.2.a.ef

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q + q^{2} + q^{4} - q^{5} + 4q^{7} + q^{8} - q^{10} + 4q^{14} + q^{16} - q^{17} + 4q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 371589120 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L'(E,1)$$ ≈ $$14.4788729002$$

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$24$$ $$I_{24}$$ Split multiplicative -1 1 24 24
$$3$$ $$2$$ $$I_6^{*}$$ Additive -1 2 12 6
$$5$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$13$$ $$4$$ $$I_4^{*}$$ Additive 1 2 10 4
$$17$$ $$1$$ $$I_{3}$$ Non-split multiplicative 1 1 3 3

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ and has index 6.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B
$$3$$ B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3, 4, 6 and 12.
Its isogeny class 258570.ef consists of 8 curves linked by isogenies of degrees dividing 12.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{17})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database
$$\Q(\sqrt{-39})$$ $$\Z/12\Z$$ Not in database
$$\Q(\sqrt{-663})$$ $$\Z/4\Z$$ Not in database
4 $$\Q(\sqrt{17}, \sqrt{-39})$$ $$\Z/2\Z \times \Z/12\Z$$ Not in database
6 6.2.2088523125.1 $$\Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.