Learn more

Refine search


Results (1-50 of 280 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
257600.a1 257600.a \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\mathsf{trivial}$ $2.461106175$ $[0, 0, 0, -1300, -49250]$ \(y^2=x^3-1300x-49250\)
257600.b1 257600.b \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -841900, -301667000]$ \(y^2=x^3-841900x-301667000\)
257600.c1 257600.c \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $2$ $\mathsf{trivial}$ $0.235017020$ $[0, 0, 0, -95500, 12910000]$ \(y^2=x^3-95500x+12910000\)
257600.d1 257600.d \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 5300, -5000]$ \(y^2=x^3+5300x-5000\)
257600.e1 257600.e \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\mathsf{trivial}$ $1.167713427$ $[0, 0, 0, -3820, -103280]$ \(y^2=x^3-3820x-103280\)
257600.f1 257600.f \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\mathsf{trivial}$ $1.328981867$ $[0, 0, 0, -1300, 37000]$ \(y^2=x^3-1300x+37000\)
257600.g1 257600.g \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 2442500, -37215701000]$ \(y^2=x^3+2442500x-37215701000\)
257600.h1 257600.h \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $2$ $\mathsf{trivial}$ $1.041671152$ $[0, 1, 0, -252833, 112746463]$ \(y^2=x^3+x^2-252833x+112746463\)
257600.h2 257600.h \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $2$ $\mathsf{trivial}$ $9.375040368$ $[0, 1, 0, 27167, -3453537]$ \(y^2=x^3+x^2+27167x-3453537\)
257600.i1 257600.i \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $2.627839813$ $[0, 1, 0, -708, 6838]$ \(y^2=x^3+x^2-708x+6838\)
257600.i2 257600.i \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $1.313919906$ $[0, 1, 0, 167, 23463]$ \(y^2=x^3+x^2+167x+23463\)
257600.j1 257600.j \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $1.003338043$ $[0, 1, 0, -593, -3857]$ \(y^2=x^3+x^2-593x-3857\)
257600.j2 257600.j \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $2.006676086$ $[0, 1, 0, 107, -357]$ \(y^2=x^3+x^2+107x-357\)
257600.k1 257600.k \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $3.212296784$ $[0, 1, 0, -112033, -14363937]$ \(y^2=x^3+x^2-112033x-14363937\)
257600.k2 257600.k \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $1.606148392$ $[0, 1, 0, -12033, 136063]$ \(y^2=x^3+x^2-12033x+136063\)
257600.l1 257600.l \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -2248, -41742]$ \(y^2=x^3+x^2-2248x-41742\)
257600.l2 257600.l \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1673, -63017]$ \(y^2=x^3+x^2-1673x-63017\)
257600.m1 257600.m \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -833, 690463]$ \(y^2=x^3+x^2-833x+690463\)
257600.n1 257600.n \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $3.991886272$ $[0, 1, 0, -1696833, 123474463]$ \(y^2=x^3+x^2-1696833x+123474463\)
257600.n2 257600.n \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $7.983772544$ $[0, 1, 0, 419167, 15558463]$ \(y^2=x^3+x^2+419167x+15558463\)
257600.o1 257600.o \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -2705633, -1699083137]$ \(y^2=x^3+x^2-2705633x-1699083137\)
257600.o2 257600.o \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -705633, -4153083137]$ \(y^2=x^3+x^2-705633x-4153083137\)
257600.o3 257600.o \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -241633, 44308863]$ \(y^2=x^3+x^2-241633x+44308863\)
257600.o4 257600.o \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 78367, 153428863]$ \(y^2=x^3+x^2+78367x+153428863\)
257600.p1 257600.p \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -5033, -136937]$ \(y^2=x^3+x^2-5033x-136937\)
257600.p2 257600.p \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -33, -391937]$ \(y^2=x^3+x^2-33x-391937\)
257600.q1 257600.q \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $2$ $\mathsf{trivial}$ $1.312172543$ $[0, 1, 0, -33, -5537]$ \(y^2=x^3+x^2-33x-5537\)
257600.r1 257600.r \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $18.53804566$ $[0, 1, 0, -40192033, -71321855937]$ \(y^2=x^3+x^2-40192033x-71321855937\)
257600.r2 257600.r \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $9.269022834$ $[0, 1, 0, -14592033, 20556544063]$ \(y^2=x^3+x^2-14592033x+20556544063\)
257600.s1 257600.s \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $37.52342011$ $[0, 1, 0, -261918480033, -51588172359559937]$ \(y^2=x^3+x^2-261918480033x-51588172359559937\)
257600.s2 257600.s \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $18.76171005$ $[0, 1, 0, -17777855033, -659217281434937]$ \(y^2=x^3+x^2-17777855033x-659217281434937\)
257600.t1 257600.t \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $2$ $\Z/2\Z$ $3.621047339$ $[0, 1, 0, -32033, -2035937]$ \(y^2=x^3+x^2-32033x-2035937\)
257600.t2 257600.t \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $2$ $\Z/2\Z$ $3.621047339$ $[0, 1, 0, -7033, 189063]$ \(y^2=x^3+x^2-7033x+189063\)
257600.u1 257600.u \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -56208, 5105338]$ \(y^2=x^3+x^2-56208x+5105338\)
257600.u2 257600.u \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -41833, 7793463]$ \(y^2=x^3+x^2-41833x+7793463\)
257600.v1 257600.v \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $2.039330918$ $[0, 1, 0, -6433, 91263]$ \(y^2=x^3+x^2-6433x+91263\)
257600.v2 257600.v \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $1.019665459$ $[0, 1, 0, -5433, 152263]$ \(y^2=x^3+x^2-5433x+152263\)
257600.w1 257600.w \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -14833, 452463]$ \(y^2=x^3+x^2-14833x+452463\)
257600.w2 257600.w \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 2667, 49963]$ \(y^2=x^3+x^2+2667x+49963\)
257600.x1 257600.x \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -564033, 162856063]$ \(y^2=x^3+x^2-564033x+162856063\)
257600.x2 257600.x \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -35033, 2569063]$ \(y^2=x^3+x^2-35033x+2569063\)
257600.y1 257600.y \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $9.102991424$ $[0, 1, 0, -48833, -4169537]$ \(y^2=x^3+x^2-48833x-4169537\)
257600.y2 257600.y \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $4.551495712$ $[0, 1, 0, -2833, -75537]$ \(y^2=x^3+x^2-2833x-75537\)
257600.z1 257600.z \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $16.30820541$ $[0, 1, 0, -266929633, -1678668331137]$ \(y^2=x^3+x^2-266929633x-1678668331137\)
257600.z2 257600.z \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $8.154102706$ $[0, 1, 0, -16929633, -25418331137]$ \(y^2=x^3+x^2-16929633x-25418331137\)
257600.z3 257600.z \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $5.436068470$ $[0, 1, 0, -4545633, -401019137]$ \(y^2=x^3+x^2-4545633x-401019137\)
257600.z4 257600.z \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $1$ $\Z/2\Z$ $2.718034235$ $[0, 1, 0, -2945633, 1936580863]$ \(y^2=x^3+x^2-2945633x+1936580863\)
257600.ba1 257600.ba \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -10113, -906017]$ \(y^2=x^3+x^2-10113x-906017\)
257600.ba2 257600.ba \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 1087, 28063]$ \(y^2=x^3+x^2+1087x+28063\)
257600.bb1 257600.bb \( 2^{6} \cdot 5^{2} \cdot 7 \cdot 23 \) $2$ $\mathsf{trivial}$ $0.511912486$ $[0, 1, 0, -6433, 198303]$ \(y^2=x^3+x^2-6433x+198303\)
Next   Download to