Properties

Label 2576.l
Number of curves $1$
Conductor $2576$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("l1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2576.l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2576.l1 2576m1 \([0, 1, 0, 2, 7]\) \(32000/1127\) \(-18032\) \([]\) \(96\) \(-0.50341\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2576.l1 has rank \(1\).

Complex multiplication

The elliptic curves in class 2576.l do not have complex multiplication.

Modular form 2576.2.a.l

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{7} - 2 q^{9} + 2 q^{11} - 3 q^{13} + O(q^{20})\) Copy content Toggle raw display