Minimal Weierstrass equation
Minimal equation
Minimal equation
Simplified equation
\(y^2=x^3-393042675x-2139843199250\)
|
(homogenize, simplify) |
\(y^2z=x^3-393042675xz^2-2139843199250z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-393042675x-2139843199250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(\frac{11168402483107424434645141499670}{348885968618766959727258289}, \frac{27710697273365746957950533887213822479455031950}{6516662888628256259851620266650545416087}\right)\)
|
$\hat{h}(P)$ | ≈ | $70.170045120995099697463299109$ |
Torsion generators
\( \left(22130, 0\right) \)
Integral points
\( \left(22130, 0\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 257400 \) | = | $2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $1907869586441855493600000000 $ | = | $2^{11} \cdot 3^{34} \cdot 5^{8} \cdot 11 \cdot 13 $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{287849398425814280018}{81784533026485575} \) | = | $2 \cdot 3^{-28} \cdot 5^{-2} \cdot 11^{-1} \cdot 13^{-1} \cdot 37^{3} \cdot 141637^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $3.9413712344629012654678618471\dots$ | ||
Stable Faltings height: | $1.9519612183985130321707301174\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $70.170045120995099697463299109\dots$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.034639062907678743995492908685\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 16 $ = $ 1\cdot2^{2}\cdot2^{2}\cdot1\cdot1 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $2$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 9.7224984287232207265940391327 $ |
Modular invariants
Modular form 257400.2.a.ej
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 132120576 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II^{*}$ | Additive | 1 | 3 | 11 | 0 |
$3$ | $4$ | $I_{28}^{*}$ | Additive | -1 | 2 | 34 | 28 |
$5$ | $4$ | $I_{2}^{*}$ | Additive | 1 | 2 | 8 | 2 |
$11$ | $1$ | $I_{1}$ | Split multiplicative | -1 | 1 | 1 | 1 |
$13$ | $1$ | $I_{1}$ | Non-split multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 257400ej
consists of 4 curves linked by isogenies of
degrees dividing 4.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{286}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | Not in database |
$2$ | \(\Q(\sqrt{330}) \) | \(\Z/4\Z\) | Not in database |
$2$ | \(\Q(\sqrt{195}) \) | \(\Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{195}, \sqrt{286})\) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/8\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/8\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.