Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
257400.a1 |
257400a1 |
257400.a |
257400a |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 11 \cdot 13^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.287488263$ |
$1$ |
|
$20$ |
$516096$ |
$1.028933$ |
$274400000/217503$ |
$[0, 0, 0, 2625, 31475]$ |
\(y^2=x^3+2625x+31475\) |
257400.b1 |
257400b1 |
257400.b |
257400b |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 3^{6} \cdot 5^{8} \cdot 11 \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$3640320$ |
$2.096649$ |
$-149946252744960/24167$ |
$[0, 0, 0, -1834875, -956660625]$ |
\(y^2=x^3-1834875x-956660625\) |
257400.c1 |
257400c1 |
257400.c |
257400c |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 11 \cdot 13^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$7.330218951$ |
$1$ |
|
$2$ |
$22235136$ |
$3.007023$ |
$-379574436601074131200/177423879009663$ |
$[0, 0, 0, -29248275, -60907927525]$ |
\(y^2=x^3-29248275x-60907927525\) |
257400.d1 |
257400d1 |
257400.d |
257400d |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 3^{10} \cdot 5^{8} \cdot 11^{3} \cdot 13 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.538251838$ |
$1$ |
|
$16$ |
$1658880$ |
$1.711678$ |
$439040/1401543$ |
$[0, 0, 0, 2625, 3844375]$ |
\(y^2=x^3+2625x+3844375\) |
257400.e1 |
257400e3 |
257400.e |
257400e |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{10} \cdot 3^{9} \cdot 5^{6} \cdot 11^{2} \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$11010048$ |
$2.698505$ |
$36652193922790372/93308787$ |
$[0, 0, 0, -15694275, 23930900750]$ |
\(y^2=x^3-15694275x+23930900750\) |
257400.e2 |
257400e2 |
257400.e |
257400e |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{8} \cdot 3^{12} \cdot 5^{6} \cdot 11^{4} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1$ |
$1$ |
|
$3$ |
$5505024$ |
$2.351933$ |
$37109806448848/1803785841$ |
$[0, 0, 0, -992775, 364396250]$ |
\(y^2=x^3-992775x+364396250\) |
257400.e3 |
257400e1 |
257400.e |
257400e |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{4} \cdot 3^{18} \cdot 5^{6} \cdot 11^{2} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$2752512$ |
$2.005356$ |
$3122884507648/835956693$ |
$[0, 0, 0, -172650, -20242375]$ |
\(y^2=x^3-172650x-20242375\) |
257400.e4 |
257400e4 |
257400.e |
257400e |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{6} \cdot 11^{8} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$11010048$ |
$2.698505$ |
$1915049403068/75239967231$ |
$[0, 0, 0, 586725, 1414763750]$ |
\(y^2=x^3+586725x+1414763750\) |
257400.f1 |
257400f1 |
257400.f |
257400f |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{11} \cdot 3^{9} \cdot 5^{8} \cdot 11^{8} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$25$ |
$5$ |
$0$ |
$283852800$ |
$4.313835$ |
$-119120411792671966610/363168950990295879$ |
$[0, 0, 0, -856432875, -24152451336250]$ |
\(y^2=x^3-856432875x-24152451336250\) |
257400.g1 |
257400g1 |
257400.g |
257400g |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{4} \cdot 3^{9} \cdot 5^{7} \cdot 11 \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1.115853429$ |
$1$ |
|
$7$ |
$663552$ |
$1.314449$ |
$18966528/9295$ |
$[0, 0, 0, -9450, -138375]$ |
\(y^2=x^3-9450x-138375\) |
257400.g2 |
257400g2 |
257400.g |
257400g |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{8} \cdot 3^{9} \cdot 5^{8} \cdot 11^{2} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2.231706859$ |
$1$ |
|
$5$ |
$1327104$ |
$1.661024$ |
$57305232/39325$ |
$[0, 0, 0, 34425, -1059750]$ |
\(y^2=x^3+34425x-1059750\) |
257400.h1 |
257400h4 |
257400.h |
257400h |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{11} \cdot 3^{18} \cdot 5^{10} \cdot 11 \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$1$ |
$4$ |
$2$ |
$1$ |
$12976128$ |
$2.731495$ |
$97486245727778/47497539375$ |
$[0, 0, 0, -2739675, -693958250]$ |
\(y^2=x^3-2739675x-693958250\) |
257400.h2 |
257400h2 |
257400.h |
257400h |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{10} \cdot 3^{12} \cdot 5^{8} \cdot 11^{2} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1$ |
$1$ |
|
$3$ |
$6488064$ |
$2.384922$ |
$29065753681636/372683025$ |
$[0, 0, 0, -1452675, 666400750]$ |
\(y^2=x^3-1452675x+666400750\) |
257400.h3 |
257400h1 |
257400.h |
257400h |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{8} \cdot 3^{9} \cdot 5^{7} \cdot 11 \cdot 13 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$1$ |
$1$ |
|
$3$ |
$3244032$ |
$2.038349$ |
$115185902730064/19305$ |
$[0, 0, 0, -1448175, 670779250]$ |
\(y^2=x^3-1448175x+670779250\) |
257400.h4 |
257400h3 |
257400.h |
257400h |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{11} \cdot 3^{9} \cdot 5^{7} \cdot 11^{4} \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$1$ |
$1$ |
|
$1$ |
$12976128$ |
$2.731495$ |
$-63649751618/56451816135$ |
$[0, 0, 0, -237675, 1746535750]$ |
\(y^2=x^3-237675x+1746535750\) |
257400.i1 |
257400i1 |
257400.i |
257400i |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{8} \cdot 3^{14} \cdot 5^{7} \cdot 11^{5} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$22118400$ |
$3.002007$ |
$9881592513536/11607361886835$ |
$[0, 0, 0, 638700, -8849355500]$ |
\(y^2=x^3+638700x-8849355500\) |
257400.j1 |
257400j2 |
257400.j |
257400j |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{11} \cdot 3^{12} \cdot 5^{6} \cdot 11 \cdot 13^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$10.48397281$ |
$1$ |
|
$7$ |
$1966080$ |
$1.855692$ |
$2361864386/1355211$ |
$[0, 0, 0, -79275, 791750]$ |
\(y^2=x^3-79275x+791750\) |
257400.j2 |
257400j1 |
257400.j |
257400j |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{10} \cdot 3^{9} \cdot 5^{6} \cdot 11^{2} \cdot 13 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2.620993204$ |
$1$ |
|
$15$ |
$983040$ |
$1.509119$ |
$72765788/42471$ |
$[0, 0, 0, 19725, 98750]$ |
\(y^2=x^3+19725x+98750\) |
257400.k1 |
257400k1 |
257400.k |
257400k |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{11} \cdot 3^{15} \cdot 5^{2} \cdot 11^{5} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$3732480$ |
$2.168808$ |
$65077813630/41209568829$ |
$[0, 0, 0, 28005, 59642710]$ |
\(y^2=x^3+28005x+59642710\) |
257400.l1 |
257400l1 |
257400.l |
257400l |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{8} \cdot 3^{6} \cdot 5^{8} \cdot 11^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5.738427661$ |
$1$ |
|
$0$ |
$1209600$ |
$1.624416$ |
$1832504320/1573$ |
$[0, 0, 0, -106500, -13367500]$ |
\(y^2=x^3-106500x-13367500\) |
257400.m1 |
257400m1 |
257400.m |
257400m |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{4} \cdot 3^{6} \cdot 5^{3} \cdot 11^{2} \cdot 13^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1.380205140$ |
$1$ |
|
$17$ |
$215040$ |
$0.800889$ |
$1009743872/20449$ |
$[0, 0, 0, -2370, 43625]$ |
\(y^2=x^3-2370x+43625\) |
257400.m2 |
257400m2 |
257400.m |
257400m |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{8} \cdot 3^{6} \cdot 5^{3} \cdot 11 \cdot 13^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5.520820562$ |
$1$ |
|
$11$ |
$430080$ |
$1.147463$ |
$5488/314171$ |
$[0, 0, 0, 105, 130250]$ |
\(y^2=x^3+105x+130250\) |
257400.n1 |
257400n1 |
257400.n |
257400n |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{4} \cdot 3^{3} \cdot 5^{7} \cdot 11 \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1.737072269$ |
$1$ |
|
$7$ |
$221184$ |
$0.765143$ |
$18966528/9295$ |
$[0, 0, 0, -1050, 5125]$ |
\(y^2=x^3-1050x+5125\) |
257400.n2 |
257400n2 |
257400.n |
257400n |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{8} \cdot 3^{3} \cdot 5^{8} \cdot 11^{2} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$0.868536134$ |
$1$ |
|
$9$ |
$442368$ |
$1.111717$ |
$57305232/39325$ |
$[0, 0, 0, 3825, 39250]$ |
\(y^2=x^3+3825x+39250\) |
257400.o1 |
257400o2 |
257400.o |
257400o |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{11} \cdot 3^{8} \cdot 5^{8} \cdot 11 \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$4$ |
$2$ |
$1$ |
$10616832$ |
$2.632595$ |
$46831495741058/11946352275$ |
$[0, 0, 0, -2145675, -904644250]$ |
\(y^2=x^3-2145675x-904644250\) |
257400.o2 |
257400o1 |
257400.o |
257400o |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{10} \cdot 3^{7} \cdot 5^{10} \cdot 11^{2} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$5308416$ |
$2.286022$ |
$338649393884/498444375$ |
$[0, 0, 0, 329325, -90369250]$ |
\(y^2=x^3+329325x-90369250\) |
257400.p1 |
257400p4 |
257400.p |
257400p |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{11} \cdot 3^{7} \cdot 5^{8} \cdot 11 \cdot 13^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$6.886757196$ |
$1$ |
|
$3$ |
$7864320$ |
$2.563633$ |
$2366492816943218/23562825$ |
$[0, 0, 0, -7932675, -8599513250]$ |
\(y^2=x^3-7932675x-8599513250\) |
257400.p2 |
257400p3 |
257400.p |
257400p |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{11} \cdot 3^{10} \cdot 5^{14} \cdot 11 \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$6.886757196$ |
$1$ |
|
$1$ |
$7864320$ |
$2.563633$ |
$27403349188178/4524609375$ |
$[0, 0, 0, -1794675, 782320750]$ |
\(y^2=x^3-1794675x+782320750\) |
257400.p3 |
257400p2 |
257400.p |
257400p |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{10} \cdot 11^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$3.443378598$ |
$1$ |
|
$7$ |
$3932160$ |
$2.217060$ |
$1240605018436/115025625$ |
$[0, 0, 0, -507675, -127588250]$ |
\(y^2=x^3-507675x-127588250\) |
257400.p4 |
257400p1 |
257400.p |
257400p |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{8} \cdot 3^{7} \cdot 5^{8} \cdot 11^{4} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1.721689299$ |
$1$ |
|
$5$ |
$1966080$ |
$1.870485$ |
$1893932336/14274975$ |
$[0, 0, 0, 36825, -9431750]$ |
\(y^2=x^3+36825x-9431750\) |
257400.q1 |
257400q3 |
257400.q |
257400q |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{7} \cdot 11^{4} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1.627270448$ |
$1$ |
|
$7$ |
$14155776$ |
$2.853348$ |
$461552841274085284/111344805$ |
$[0, 0, 0, -36513075, 84922082750]$ |
\(y^2=x^3-36513075x+84922082750\) |
257400.q2 |
257400q4 |
257400.q |
257400q |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{10} \cdot 3^{8} \cdot 5^{7} \cdot 11 \cdot 13^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1.627270448$ |
$1$ |
|
$7$ |
$14155776$ |
$2.853348$ |
$874453074310084/403786706895$ |
$[0, 0, 0, -4518075, -1661652250]$ |
\(y^2=x^3-4518075x-1661652250\) |
257400.q3 |
257400q2 |
257400.q |
257400q |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{8} \cdot 3^{10} \cdot 5^{8} \cdot 11^{2} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$0.813635224$ |
$1$ |
|
$17$ |
$7077888$ |
$2.506771$ |
$455795194086736/6998159025$ |
$[0, 0, 0, -2290575, 1316515250]$ |
\(y^2=x^3-2290575x+1316515250\) |
257400.q4 |
257400q1 |
257400.q |
257400q |
$4$ |
$4$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 3^{14} \cdot 5^{10} \cdot 11 \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$1.627270448$ |
$1$ |
|
$7$ |
$3538944$ |
$2.160198$ |
$-1171019776/7623061875$ |
$[0, 0, 0, -12450, 56712125]$ |
\(y^2=x^3-12450x+56712125\) |
257400.r1 |
257400r1 |
257400.r |
257400r |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{8} \cdot 3^{6} \cdot 5^{7} \cdot 11 \cdot 13^{5} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.262638105$ |
$1$ |
|
$22$ |
$1966080$ |
$1.903229$ |
$-4116151296/20421115$ |
$[0, 0, 0, -47700, 12406500]$ |
\(y^2=x^3-47700x+12406500\) |
257400.s1 |
257400s2 |
257400.s |
257400s |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( 2^{10} \cdot 3^{9} \cdot 5^{6} \cdot 11^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1.148530929$ |
$1$ |
|
$7$ |
$1769472$ |
$1.804874$ |
$15927506500/552123$ |
$[0, 0, 0, -118875, 15295750]$ |
\(y^2=x^3-118875x+15295750\) |
257400.s2 |
257400s1 |
257400.s |
257400s |
$2$ |
$2$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{8} \cdot 3^{12} \cdot 5^{6} \cdot 11 \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$2.297061859$ |
$1$ |
|
$5$ |
$884736$ |
$1.458302$ |
$686000/104247$ |
$[0, 0, 0, 2625, 837250]$ |
\(y^2=x^3+2625x+837250\) |
257400.t1 |
257400t1 |
257400.t |
257400t |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{11} \cdot 3^{16} \cdot 5^{6} \cdot 11 \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$5376000$ |
$2.465565$ |
$-6184708364018/1427037183$ |
$[0, 0, 0, -1092675, 519934750]$ |
\(y^2=x^3-1092675x+519934750\) |
257400.u1 |
257400u1 |
257400.u |
257400u |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 3^{12} \cdot 5^{2} \cdot 11^{3} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.794304225$ |
$1$ |
|
$4$ |
$442368$ |
$1.131348$ |
$-56303330560/12613887$ |
$[0, 0, 0, -5295, -174665]$ |
\(y^2=x^3-5295x-174665\) |
257400.v1 |
257400v1 |
257400.v |
257400v |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{11} \cdot 3^{9} \cdot 5^{7} \cdot 11^{3} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4.213929312$ |
$1$ |
|
$2$ |
$17141760$ |
$3.078979$ |
$-439405355845493858/66715782705$ |
$[0, 0, 0, -45255675, 117196501750]$ |
\(y^2=x^3-45255675x+117196501750\) |
257400.w1 |
257400w1 |
257400.w |
257400w |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 3^{22} \cdot 5^{4} \cdot 11 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2.591437996$ |
$1$ |
|
$2$ |
$2113536$ |
$1.951794$ |
$-106997137235200/6155681103$ |
$[0, 0, 0, -191775, -33893525]$ |
\(y^2=x^3-191775x-33893525\) |
257400.x1 |
257400x1 |
257400.x |
257400x |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 3^{16} \cdot 5^{4} \cdot 11 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1.786128975$ |
$1$ |
|
$2$ |
$706560$ |
$1.335310$ |
$14387782400/8444007$ |
$[0, 0, 0, 9825, 44575]$ |
\(y^2=x^3+9825x+44575\) |
257400.y1 |
257400y1 |
257400.y |
257400y |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 3^{8} \cdot 5^{8} \cdot 11 \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$399360$ |
$1.132803$ |
$-160000/1287$ |
$[0, 0, 0, -1875, -120625]$ |
\(y^2=x^3-1875x-120625\) |
257400.z1 |
257400z1 |
257400.z |
257400z |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{10} \cdot 3^{11} \cdot 5^{8} \cdot 11 \cdot 13^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$12.06877741$ |
$1$ |
|
$4$ |
$15206400$ |
$2.885384$ |
$-154801343130820/12902060457$ |
$[0, 0, 0, -7417875, -8317341250]$ |
\(y^2=x^3-7417875x-8317341250\) |
257400.ba1 |
257400ba1 |
257400.ba |
257400ba |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 3^{8} \cdot 5^{8} \cdot 11^{7} \cdot 13^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.569918669$ |
$1$ |
|
$18$ |
$19353600$ |
$3.093300$ |
$-2757294236281534720/385319832183$ |
$[0, 0, 0, -48430875, 129743024375]$ |
\(y^2=x^3-48430875x+129743024375\) |
257400.bb1 |
257400bb1 |
257400.bb |
257400bb |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 3^{24} \cdot 5^{8} \cdot 11^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3.779014543$ |
$1$ |
|
$0$ |
$174182400$ |
$4.202393$ |
$18700449490920637280000/11875724217287331687$ |
$[0, 0, 0, 916738125, 3333660629375]$ |
\(y^2=x^3+916738125x+3333660629375\) |
257400.bc1 |
257400bc1 |
257400.bc |
257400bc |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{11} \cdot 3^{8} \cdot 5^{6} \cdot 11^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$1492992$ |
$1.674913$ |
$254527054/155727$ |
$[0, 0, 0, 37725, 674750]$ |
\(y^2=x^3+37725x+674750\) |
257400.bd1 |
257400bd1 |
257400.bd |
257400bd |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{4} \cdot 3^{8} \cdot 5^{2} \cdot 11 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.713302861$ |
$1$ |
|
$6$ |
$276480$ |
$0.791399$ |
$-902360320/217503$ |
$[0, 0, 0, -1335, -22345]$ |
\(y^2=x^3-1335x-22345\) |
257400.be1 |
257400be1 |
257400.be |
257400be |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{10} \cdot 3^{7} \cdot 5^{4} \cdot 11 \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.490216843$ |
$1$ |
|
$6$ |
$1763328$ |
$1.872124$ |
$-142648759159300/5577$ |
$[0, 0, 0, -844275, 298589150]$ |
\(y^2=x^3-844275x+298589150\) |
257400.bf1 |
257400bf1 |
257400.bf |
257400bf |
$1$ |
$1$ |
\( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) |
\( - 2^{11} \cdot 3^{3} \cdot 5^{4} \cdot 11 \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$107520$ |
$0.590508$ |
$-984150/143$ |
$[0, 0, 0, -675, 7550]$ |
\(y^2=x^3-675x+7550\) |