Learn more

Refine search


Results (1-50 of 211 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
257400.a1 257400.a \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $2$ $\mathsf{trivial}$ $0.287488263$ $[0, 0, 0, 2625, 31475]$ \(y^2=x^3+2625x+31475\)
257400.b1 257400.b \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1834875, -956660625]$ \(y^2=x^3-1834875x-956660625\)
257400.c1 257400.c \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $7.330218951$ $[0, 0, 0, -29248275, -60907927525]$ \(y^2=x^3-29248275x-60907927525\)
257400.d1 257400.d \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $2$ $\mathsf{trivial}$ $0.538251838$ $[0, 0, 0, 2625, 3844375]$ \(y^2=x^3+2625x+3844375\)
257400.e1 257400.e \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -15694275, 23930900750]$ \(y^2=x^3-15694275x+23930900750\)
257400.e2 257400.e \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -992775, 364396250]$ \(y^2=x^3-992775x+364396250\)
257400.e3 257400.e \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -172650, -20242375]$ \(y^2=x^3-172650x-20242375\)
257400.e4 257400.e \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 586725, 1414763750]$ \(y^2=x^3+586725x+1414763750\)
257400.f1 257400.f \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -856432875, -24152451336250]$ \(y^2=x^3-856432875x-24152451336250\)
257400.g1 257400.g \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $1.115853429$ $[0, 0, 0, -9450, -138375]$ \(y^2=x^3-9450x-138375\)
257400.g2 257400.g \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $2.231706859$ $[0, 0, 0, 34425, -1059750]$ \(y^2=x^3+34425x-1059750\)
257400.h1 257400.h \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2739675, -693958250]$ \(y^2=x^3-2739675x-693958250\)
257400.h2 257400.h \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -1452675, 666400750]$ \(y^2=x^3-1452675x+666400750\)
257400.h3 257400.h \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[0, 0, 0, -1448175, 670779250]$ \(y^2=x^3-1448175x+670779250\)
257400.h4 257400.h \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -237675, 1746535750]$ \(y^2=x^3-237675x+1746535750\)
257400.i1 257400.i \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 638700, -8849355500]$ \(y^2=x^3+638700x-8849355500\)
257400.j1 257400.j \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $10.48397281$ $[0, 0, 0, -79275, 791750]$ \(y^2=x^3-79275x+791750\)
257400.j2 257400.j \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $2.620993204$ $[0, 0, 0, 19725, 98750]$ \(y^2=x^3+19725x+98750\)
257400.k1 257400.k \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 28005, 59642710]$ \(y^2=x^3+28005x+59642710\)
257400.l1 257400.l \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $5.738427661$ $[0, 0, 0, -106500, -13367500]$ \(y^2=x^3-106500x-13367500\)
257400.m1 257400.m \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $1.380205140$ $[0, 0, 0, -2370, 43625]$ \(y^2=x^3-2370x+43625\)
257400.m2 257400.m \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $2$ $\Z/2\Z$ $5.520820562$ $[0, 0, 0, 105, 130250]$ \(y^2=x^3+105x+130250\)
257400.n1 257400.n \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $1.737072269$ $[0, 0, 0, -1050, 5125]$ \(y^2=x^3-1050x+5125\)
257400.n2 257400.n \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $0.868536134$ $[0, 0, 0, 3825, 39250]$ \(y^2=x^3+3825x+39250\)
257400.o1 257400.o \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2145675, -904644250]$ \(y^2=x^3-2145675x-904644250\)
257400.o2 257400.o \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 329325, -90369250]$ \(y^2=x^3+329325x-90369250\)
257400.p1 257400.p \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $6.886757196$ $[0, 0, 0, -7932675, -8599513250]$ \(y^2=x^3-7932675x-8599513250\)
257400.p2 257400.p \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $6.886757196$ $[0, 0, 0, -1794675, 782320750]$ \(y^2=x^3-1794675x+782320750\)
257400.p3 257400.p \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.443378598$ $[0, 0, 0, -507675, -127588250]$ \(y^2=x^3-507675x-127588250\)
257400.p4 257400.p \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $1.721689299$ $[0, 0, 0, 36825, -9431750]$ \(y^2=x^3+36825x-9431750\)
257400.q1 257400.q \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $1.627270448$ $[0, 0, 0, -36513075, 84922082750]$ \(y^2=x^3-36513075x+84922082750\)
257400.q2 257400.q \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $1.627270448$ $[0, 0, 0, -4518075, -1661652250]$ \(y^2=x^3-4518075x-1661652250\)
257400.q3 257400.q \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.813635224$ $[0, 0, 0, -2290575, 1316515250]$ \(y^2=x^3-2290575x+1316515250\)
257400.q4 257400.q \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $1.627270448$ $[0, 0, 0, -12450, 56712125]$ \(y^2=x^3-12450x+56712125\)
257400.r1 257400.r \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $2$ $\mathsf{trivial}$ $0.262638105$ $[0, 0, 0, -47700, 12406500]$ \(y^2=x^3-47700x+12406500\)
257400.s1 257400.s \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $1.148530929$ $[0, 0, 0, -118875, 15295750]$ \(y^2=x^3-118875x+15295750\)
257400.s2 257400.s \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $2.297061859$ $[0, 0, 0, 2625, 837250]$ \(y^2=x^3+2625x+837250\)
257400.t1 257400.t \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1092675, 519934750]$ \(y^2=x^3-1092675x+519934750\)
257400.u1 257400.u \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $1.794304225$ $[0, 0, 0, -5295, -174665]$ \(y^2=x^3-5295x-174665\)
257400.v1 257400.v \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $4.213929312$ $[0, 0, 0, -45255675, 117196501750]$ \(y^2=x^3-45255675x+117196501750\)
257400.w1 257400.w \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $2.591437996$ $[0, 0, 0, -191775, -33893525]$ \(y^2=x^3-191775x-33893525\)
257400.x1 257400.x \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $1.786128975$ $[0, 0, 0, 9825, 44575]$ \(y^2=x^3+9825x+44575\)
257400.y1 257400.y \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -1875, -120625]$ \(y^2=x^3-1875x-120625\)
257400.z1 257400.z \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $2$ $\mathsf{trivial}$ $12.06877741$ $[0, 0, 0, -7417875, -8317341250]$ \(y^2=x^3-7417875x-8317341250\)
257400.ba1 257400.ba \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $2$ $\mathsf{trivial}$ $0.569918669$ $[0, 0, 0, -48430875, 129743024375]$ \(y^2=x^3-48430875x+129743024375\)
257400.bb1 257400.bb \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $3.779014543$ $[0, 0, 0, 916738125, 3333660629375]$ \(y^2=x^3+916738125x+3333660629375\)
257400.bc1 257400.bc \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 37725, 674750]$ \(y^2=x^3+37725x+674750\)
257400.bd1 257400.bd \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.713302861$ $[0, 0, 0, -1335, -22345]$ \(y^2=x^3-1335x-22345\)
257400.be1 257400.be \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.490216843$ $[0, 0, 0, -844275, 298589150]$ \(y^2=x^3-844275x+298589150\)
257400.bf1 257400.bf \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -675, 7550]$ \(y^2=x^3-675x+7550\)
Next   Download to