Show commands: SageMath
Rank
The elliptic curves in class 256.b have rank \(1\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||||||||
Complex multiplication
Each elliptic curve in class 256.b has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-1}) \).Modular form 256.2.a.b
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 256.b
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
|---|---|---|---|---|---|---|---|---|---|
| 256.b1 | 256b1 | \([0, 0, 0, -2, 0]\) | \(1728\) | \(512\) | \([2]\) | \(8\) | \(-0.79067\) | \(\Gamma_0(N)\)-optimal | \(-4\) |
| 256.b2 | 256b2 | \([0, 0, 0, 8, 0]\) | \(1728\) | \(-32768\) | \([2]\) | \(16\) | \(-0.44410\) | \(-4\) |