Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-3x+1\) | (homogenize, simplify) |
\(y^2z=x^3+x^2z-3xz^2+z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-270x+1512\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = | \(\left(0, 1\right)\) |
$\hat{h}(P)$ | ≈ | $0.48012579750829764693652026591$ |
Torsion generators
\( \left(1, 0\right) \)
Integral points
\((-1,\pm 2)\), \((0,\pm 1)\), \( \left(1, 0\right) \), \((9,\pm 28)\)
Invariants
Conductor: | \( 256 \) | = | $2^{8}$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $512 $ | = | $2^{9} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( 8000 \) | = | $2^{6} \cdot 5^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z[\sqrt{-2}]\) | (potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $N(\mathrm{U}(1))$ | |||
Faltings height: | $-0.75054624063986677446489366634\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $-1.2704066260598257565278177574\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $0.9029767420170889\dots$ | |||
Szpiro ratio: | $2.745723035582761\dots$ |
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $0.48012579750829764693652026591\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $5.0378540936193068771615222380\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 2 $ = $ 2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $2$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 1.2094018572147058551904833617 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 1.209401857 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 5.037854 \cdot 0.480126 \cdot 2}{2^2} \approx 1.209401857$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 8 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There is only one prime $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III$ | additive | 1 | 8 | 9 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.192.5.607 |
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 1 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 256.a
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | 2.2.8.1-1024.1-d4 |
$4$ | \(\Q(\zeta_{16})^+\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.0.6144.1 | \(\Z/6\Z\) | not in database |
$4$ | 4.2.18432.2 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.67108864.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.67108864.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.339738624.10 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$8$ | 8.0.150994944.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$8$ | 8.4.1358954496.3 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | 12.0.169075682574336.4 | \(\Z/18\Z\) | not in database |
$16$ | 16.0.18014398509481984.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.1846757322198614016.7 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
$16$ | 16.0.364791569817010176.1 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | 16.8.29548117155177824256.1 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$20$ | 20.0.84954018740373771557797888.2 | \(\Z/22\Z\) | not in database |
We only show fields where the torsion growth is primitive.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | ss | ss | ord | ss | ord | ord | ss | ss | ss | ss | ord | ord | ss |
$\lambda$-invariant(s) | - | 3 | 1,1 | 3,1 | 1 | 1,1 | 1 | 1 | 1,1 | 1,1 | 1,1 | 1,1 | 1 | 1 | 3,1 |
$\mu$-invariant(s) | - | 0 | 0,0 | 0,0 | 0 | 0,0 | 0 | 0 | 0,0 | 0,0 | 0,0 | 0,0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.