Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 256.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality | CM discriminant |
---|---|---|---|---|---|---|---|---|---|
256.a1 | 256a2 | \([0, 1, 0, -13, -21]\) | \(8000\) | \(32768\) | \([2]\) | \(16\) | \(-0.40397\) | \(-8\) | |
256.a2 | 256a1 | \([0, 1, 0, -3, 1]\) | \(8000\) | \(512\) | \([2]\) | \(8\) | \(-0.75055\) | \(\Gamma_0(N)\)-optimal | \(-8\) |
Rank
sage: E.rank()
The elliptic curves in class 256.a have rank \(1\).
Complex multiplication
Each elliptic curve in class 256.a has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-2}) \).Modular form 256.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.