Properties

Label 2550.q
Number of curves $1$
Conductor $2550$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("q1")
 
E.isogeny_class()
 

Elliptic curves in class 2550.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2550.q1 2550j1 \([1, 0, 1, -351801, -97421732]\) \(-192607474931043120625/52443022624653312\) \(-1311075565616332800\) \([]\) \(57960\) \(2.1925\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2550.q1 has rank \(0\).

Complex multiplication

The elliptic curves in class 2550.q do not have complex multiplication.

Modular form 2550.2.a.q

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} + 4 q^{7} - q^{8} + q^{9} + 2 q^{11} + q^{12} + 2 q^{13} - 4 q^{14} + q^{16} - q^{17} - q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display