Show commands:
SageMath
E = EllipticCurve("q1")
E.isogeny_class()
Elliptic curves in class 2550.q
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2550.q1 | 2550j1 | \([1, 0, 1, -351801, -97421732]\) | \(-192607474931043120625/52443022624653312\) | \(-1311075565616332800\) | \([]\) | \(57960\) | \(2.1925\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 2550.q1 has rank \(0\).
Complex multiplication
The elliptic curves in class 2550.q do not have complex multiplication.Modular form 2550.2.a.q
sage: E.q_eigenform(10)