Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
25401600.a1 |
- |
25401600.a |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{9} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$594542592$ |
$2.309143$ |
$-7008192/875$ |
$0.78422$ |
$3.05459$ |
$[0, 0, 0, -676200, -235984000]$ |
\(y^2=x^3-676200x-235984000\) |
280.2.0.? |
$[ ]$ |
25401600.b1 |
- |
25401600.b |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{15} \cdot 3^{6} \cdot 5^{10} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$4.800621528$ |
$1$ |
|
$2$ |
$940584960$ |
$2.515945$ |
$43200$ |
$0.94639$ |
$3.25110$ |
$[0, 0, 0, -2205000, 1234800000]$ |
\(y^2=x^3-2205000x+1234800000\) |
8.2.0.b.1 |
$[(744, 2472)]$ |
25401600.c1 |
- |
25401600.c |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{9} \cdot 3^{12} \cdot 5^{4} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$3.931083010$ |
$1$ |
|
$2$ |
$282175488$ |
$1.913958$ |
$43200$ |
$0.94639$ |
$2.82742$ |
$[0, 0, 0, -198450, -33339600]$ |
\(y^2=x^3-198450x-33339600\) |
8.2.0.b.1 |
$[(-230, 370)]$ |
25401600.d1 |
- |
25401600.d |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{9} \cdot 3^{6} \cdot 5^{4} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$11.02730672$ |
$1$ |
|
$0$ |
$94058496$ |
$1.364653$ |
$43200$ |
$0.94639$ |
$2.44082$ |
$[0, 0, 0, -22050, -1234800]$ |
\(y^2=x^3-22050x-1234800\) |
8.2.0.b.1 |
$[(51199/11, 10746793/11)]$ |
25401600.e1 |
- |
25401600.e |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{15} \cdot 3^{12} \cdot 5^{10} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$27.61137809$ |
$1$ |
|
$0$ |
$2821754880$ |
$3.065250$ |
$43200$ |
$0.94639$ |
$3.63770$ |
$[0, 0, 0, -19845000, 33339600000]$ |
\(y^2=x^3-19845000x+33339600000\) |
8.2.0.b.1 |
$[(-665012827664/23317, 2994125690436381584/23317)]$ |
25401600.f1 |
- |
25401600.f |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{9} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1783627776$ |
$2.858448$ |
$-7008192/875$ |
$0.78422$ |
$3.44119$ |
$[0, 0, 0, -6085800, -6371568000]$ |
\(y^2=x^3-6085800x-6371568000\) |
280.2.0.? |
$[ ]$ |
25401600.g1 |
- |
25401600.g |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{9} \cdot 3^{12} \cdot 5^{6} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$172523520$ |
$1.736519$ |
$4148928$ |
$1.45567$ |
$2.82742$ |
$[0, 0, 0, -198450, 34020000]$ |
\(y^2=x^3-198450x+34020000\) |
8.2.0.b.1 |
$[ ]$ |
25401600.h1 |
- |
25401600.h |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{15} \cdot 3^{6} \cdot 5^{6} \cdot 7^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1.745946849$ |
$1$ |
|
$12$ |
$805109760$ |
$2.506741$ |
$4148928$ |
$1.45567$ |
$3.36951$ |
$[0, 0, 0, -4321800, 3457440000]$ |
\(y^2=x^3-4321800x+3457440000\) |
8.2.0.b.1 |
$[(0, 58800), (1176, 1176)]$ |
25401600.i1 |
- |
25401600.i |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{7} \cdot 7^{3} \) |
$3$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$4.736266127$ |
$1$ |
|
$24$ |
$95551488$ |
$1.542004$ |
$576/5$ |
$0.50645$ |
$2.44652$ |
$[0, 0, 0, 9450, -1323000]$ |
\(y^2=x^3+9450x-1323000\) |
280.2.0.? |
$[(210, 3150), (84, 252), (660, 17100)]$ |
25401600.j1 |
- |
25401600.j |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{7} \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$445906944$ |
$2.312225$ |
$576/5$ |
$0.50645$ |
$2.98860$ |
$[0, 0, 0, 205800, -134456000]$ |
\(y^2=x^3+205800x-134456000\) |
280.2.0.? |
$[ ]$ |
25401600.k1 |
- |
25401600.k |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{7} \cdot 7^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$7.785737679$ |
$1$ |
|
$4$ |
$31850496$ |
$0.992698$ |
$576/5$ |
$0.50645$ |
$2.05992$ |
$[0, 0, 0, 1050, -49000]$ |
\(y^2=x^3+1050x-49000\) |
280.2.0.? |
$[(35, 175), (2660, 137200)]$ |
25401600.l1 |
- |
25401600.l |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{7} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$11.00495965$ |
$1$ |
|
$0$ |
$1337720832$ |
$2.861534$ |
$576/5$ |
$0.50645$ |
$3.37520$ |
$[0, 0, 0, 1852200, -3630312000]$ |
\(y^2=x^3+1852200x-3630312000\) |
280.2.0.? |
$[(4128985/58, 4328634275/58)]$ |
25401600.m1 |
- |
25401600.m |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{9} \cdot 3^{6} \cdot 5^{6} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$57507840$ |
$1.187212$ |
$4148928$ |
$1.45567$ |
$2.44082$ |
$[0, 0, 0, -22050, 1260000]$ |
\(y^2=x^3-22050x+1260000\) |
8.2.0.b.1 |
$[ ]$ |
25401600.n1 |
- |
25401600.n |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{15} \cdot 3^{12} \cdot 5^{6} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$2415329280$ |
$3.056046$ |
$4148928$ |
$1.45567$ |
$3.75611$ |
$[0, 0, 0, -38896200, 93350880000]$ |
\(y^2=x^3-38896200x+93350880000\) |
8.2.0.b.1 |
$[ ]$ |
25401600.o1 |
- |
25401600.o |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{9} \cdot 3^{6} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$2.384022228$ |
$1$ |
|
$2$ |
$402554880$ |
$2.160168$ |
$4148928$ |
$1.45567$ |
$3.12559$ |
$[0, 0, 0, -1080450, -432180000]$ |
\(y^2=x^3-1080450x-432180000\) |
8.2.0.b.1 |
$[(-600, 300)]$ |
25401600.p1 |
- |
25401600.p |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{15} \cdot 3^{12} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$7.873930759$ |
$1$ |
|
$2$ |
$345047040$ |
$2.083092$ |
$4148928$ |
$1.45567$ |
$3.07134$ |
$[0, 0, 0, -793800, -272160000]$ |
\(y^2=x^3-793800x-272160000\) |
8.2.0.b.1 |
$[(12625, 1414925)]$ |
25401600.q1 |
- |
25401600.q |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{7} \cdot 7^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$7.006811170$ |
$1$ |
|
$4$ |
$222953472$ |
$1.965652$ |
$576/5$ |
$0.50645$ |
$2.74468$ |
$[0, 0, 0, 51450, 16807000]$ |
\(y^2=x^3+51450x+16807000\) |
280.2.0.? |
$[(-735/2, 8575/2), (490/3, 120050/3)]$ |
25401600.r1 |
- |
25401600.r |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{7} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1.827270339$ |
$1$ |
|
$2$ |
$191102976$ |
$1.888578$ |
$576/5$ |
$0.50645$ |
$2.69044$ |
$[0, 0, 0, 37800, 10584000]$ |
\(y^2=x^3+37800x+10584000\) |
280.2.0.? |
$[(840, 25200)]$ |
25401600.s1 |
- |
25401600.s |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{7} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$9.178546752$ |
$1$ |
|
$0$ |
$668860416$ |
$2.514957$ |
$576/5$ |
$0.50645$ |
$3.13129$ |
$[0, 0, 0, 463050, 453789000]$ |
\(y^2=x^3+463050x+453789000\) |
280.2.0.? |
$[(6274/3, 901718/3)]$ |
25401600.t1 |
- |
25401600.t |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{7} \cdot 7^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$4.768361487$ |
$1$ |
|
$4$ |
$63700992$ |
$1.339272$ |
$576/5$ |
$0.50645$ |
$2.30384$ |
$[0, 0, 0, 4200, 392000]$ |
\(y^2=x^3+4200x+392000\) |
280.2.0.? |
$[(-40, 400), (56, 896)]$ |
25401600.u1 |
- |
25401600.u |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{9} \cdot 3^{12} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$14.46278712$ |
$1$ |
|
$0$ |
$1207664640$ |
$2.709473$ |
$4148928$ |
$1.45567$ |
$3.51219$ |
$[0, 0, 0, -9724050, -11668860000]$ |
\(y^2=x^3-9724050x-11668860000\) |
8.2.0.b.1 |
$[(-135562616/275, 30149491652/275)]$ |
25401600.v1 |
- |
25401600.v |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{15} \cdot 3^{6} \cdot 5^{6} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$12.17480647$ |
$1$ |
|
$0$ |
$115015680$ |
$1.533785$ |
$4148928$ |
$1.45567$ |
$2.68474$ |
$[0, 0, 0, -88200, -10080000]$ |
\(y^2=x^3-88200x-10080000\) |
8.2.0.b.1 |
$[(844225/27, 747138475/27)]$ |
25401600.w1 |
- |
25401600.w |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{9} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1.743518615$ |
$1$ |
|
$2$ |
$297271296$ |
$1.962568$ |
$-7008192/875$ |
$0.78422$ |
$2.81067$ |
$[0, 0, 0, -169050, 29498000]$ |
\(y^2=x^3-169050x+29498000\) |
280.2.0.? |
$[(-385, 6125)]$ |
25401600.x1 |
- |
25401600.x |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{9} \cdot 3^{6} \cdot 5^{10} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$470292480$ |
$2.169373$ |
$43200$ |
$0.94639$ |
$3.00718$ |
$[0, 0, 0, -551250, -154350000]$ |
\(y^2=x^3-551250x-154350000\) |
8.2.0.b.1 |
$[ ]$ |
25401600.y1 |
- |
25401600.y |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{15} \cdot 3^{12} \cdot 5^{4} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$564350976$ |
$2.260532$ |
$43200$ |
$0.94639$ |
$3.07134$ |
$[0, 0, 0, -793800, 266716800]$ |
\(y^2=x^3-793800x+266716800\) |
8.2.0.b.1 |
$[ ]$ |
25401600.z1 |
- |
25401600.z |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{15} \cdot 3^{6} \cdot 5^{4} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$188116992$ |
$1.711226$ |
$43200$ |
$0.94639$ |
$2.68474$ |
$[0, 0, 0, -88200, 9878400]$ |
\(y^2=x^3-88200x+9878400\) |
8.2.0.b.1 |
$[ ]$ |
25401600.ba1 |
- |
25401600.ba |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{9} \cdot 3^{12} \cdot 5^{10} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1410877440$ |
$2.718678$ |
$43200$ |
$0.94639$ |
$3.39378$ |
$[0, 0, 0, -4961250, -4167450000]$ |
\(y^2=x^3-4961250x-4167450000\) |
8.2.0.b.1 |
$[ ]$ |
25401600.bb1 |
- |
25401600.bb |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{9} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$280$ |
$2$ |
$0$ |
$1.201509943$ |
$1$ |
|
$2$ |
$891813888$ |
$2.511875$ |
$-7008192/875$ |
$0.78422$ |
$3.19727$ |
$[0, 0, 0, -1521450, 796446000]$ |
\(y^2=x^3-1521450x+796446000\) |
280.2.0.? |
$[(210, 22050)]$ |
25401600.bc1 |
- |
25401600.bc |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{12} \cdot 5^{14} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2484338688$ |
$3.151543$ |
$-42144192/390625$ |
$1.04825$ |
$3.58612$ |
$[0, 0, 0, -5755050, -21920787000]$ |
\(y^2=x^3-5755050x-21920787000\) |
8.2.0.a.1 |
$[ ]$ |
25401600.bd1 |
- |
25401600.bd |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{6} \cdot 5^{14} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$828112896$ |
$2.602238$ |
$-42144192/390625$ |
$1.04825$ |
$3.19952$ |
$[0, 0, 0, -639450, -811881000]$ |
\(y^2=x^3-639450x-811881000\) |
8.2.0.a.1 |
$[ ]$ |
25401600.be1 |
- |
25401600.be |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{8} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.8.0.1 |
|
$112$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$575078400$ |
$2.464996$ |
$-1120368960/2401$ |
$0.95627$ |
$3.28582$ |
$[0, 0, 0, -2682750, 1694420000]$ |
\(y^2=x^3-2682750x+1694420000\) |
4.4.0.a.1, 8.8.0.a.1, 112.16.0.? |
$[ ]$ |
25401600.bf1 |
- |
25401600.bf |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{2} \cdot 7^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.8.0.1 |
|
$112$ |
$16$ |
$0$ |
$11.27363897$ |
$1$ |
|
$0$ |
$690094080$ |
$2.556160$ |
$-1120368960/2401$ |
$0.95627$ |
$3.34998$ |
$[0, 0, 0, -3863160, -2927957760]$ |
\(y^2=x^3-3863160x-2927957760\) |
4.4.0.a.1, 8.8.0.a.1, 112.16.0.? |
$[(2355801/5, 3615036201/5)]$ |
25401600.bg1 |
- |
25401600.bg |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{2} \cdot 7^{10} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.8.0.1 |
|
$112$ |
$16$ |
$0$ |
$67.13696104$ |
$1$ |
|
$0$ |
$230031360$ |
$2.006851$ |
$-1120368960/2401$ |
$0.95627$ |
$2.96338$ |
$[0, 0, 0, -429240, -108442880]$ |
\(y^2=x^3-429240x-108442880\) |
4.4.0.a.1, 8.8.0.a.1, 112.16.0.? |
$[(13504/3, 1383472/3), (103656/11, 16437736/11)]$ |
25401600.bh1 |
- |
25401600.bh |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{8} \cdot 7^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.8.0.1 |
|
$112$ |
$16$ |
$0$ |
$2.742044941$ |
$1$ |
|
$2$ |
$1725235200$ |
$3.014305$ |
$-1120368960/2401$ |
$0.95627$ |
$3.67243$ |
$[0, 0, 0, -24144750, 45749340000]$ |
\(y^2=x^3-24144750x+45749340000\) |
4.4.0.a.1, 8.8.0.a.1, 112.16.0.? |
$[(2800, 9800)]$ |
25401600.bi1 |
- |
25401600.bi |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{12} \cdot 5^{4} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$7.393875738$ |
$1$ |
|
$0$ |
$589234176$ |
$2.485218$ |
$43200/49$ |
$0.72784$ |
$3.07134$ |
$[0, 0, 0, 793800, 266716800]$ |
\(y^2=x^3+793800x+266716800\) |
8.2.0.a.1 |
$[(3241/3, 660961/3)]$ |
25401600.bj1 |
- |
25401600.bj |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{6} \cdot 5^{10} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$491028480$ |
$2.394058$ |
$43200/49$ |
$0.72784$ |
$3.00718$ |
$[0, 0, 0, 551250, -154350000]$ |
\(y^2=x^3+551250x-154350000\) |
8.2.0.a.1 |
$[ ]$ |
25401600.bk1 |
- |
25401600.bk |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{9} \cdot 7^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$11.16617897$ |
$1$ |
|
$6$ |
$118333440$ |
$1.684801$ |
$-4032$ |
$0.43062$ |
$2.59584$ |
$[0, 0, 0, -47250, 4725000]$ |
\(y^2=x^3-47250x+4725000\) |
40.2.0.a.1 |
$[(100, 1000), (1150/3, 23750/3)]$ |
25401600.bl1 |
- |
25401600.bl |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{9} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$3.437450141$ |
$1$ |
|
$2$ |
$552222720$ |
$2.455025$ |
$-4032$ |
$0.43062$ |
$3.13792$ |
$[0, 0, 0, -1029000, 480200000]$ |
\(y^2=x^3-1029000x+480200000\) |
40.2.0.a.1 |
$[(800, 13000)]$ |
25401600.bm1 |
- |
25401600.bm |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{3} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15777792$ |
$0.677349$ |
$-4032$ |
$0.43062$ |
$1.88680$ |
$[0, 0, 0, -840, -11200]$ |
\(y^2=x^3-840x-11200\) |
40.2.0.a.1 |
$[ ]$ |
25401600.bn1 |
- |
25401600.bn |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{10} \cdot 5^{3} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$6.020975586$ |
$1$ |
|
$0$ |
$165666816$ |
$1.853037$ |
$-4032$ |
$0.43062$ |
$2.71424$ |
$[0, 0, 0, -92610, -12965400]$ |
\(y^2=x^3-92610x-12965400\) |
40.2.0.a.1 |
$[(3871/3, 139699/3)]$ |
25401600.bo1 |
- |
25401600.bo |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{4} \cdot 5^{12} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1512898560$ |
$3.025051$ |
$-3809037964608/15625$ |
$1.06636$ |
$3.81765$ |
$[0, 0, 0, -55183800, -157785488000]$ |
\(y^2=x^3-55183800x-157785488000\) |
8.2.0.a.1 |
$[ ]$ |
25401600.bp1 |
- |
25401600.bp |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{12} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$17.40043170$ |
$1$ |
|
$0$ |
$4538695680$ |
$3.574356$ |
$-3809037964608/15625$ |
$1.06636$ |
$4.20425$ |
$[0, 0, 0, -496654200, -4260208176000]$ |
\(y^2=x^3-496654200x-4260208176000\) |
8.2.0.a.1 |
$[(13474310640/391, 1508218226474400/391)]$ |
25401600.bq1 |
- |
25401600.bq |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1.839690618$ |
$1$ |
|
$2$ |
$47333376$ |
$1.226654$ |
$-4032$ |
$0.43062$ |
$2.27340$ |
$[0, 0, 0, -7560, -302400]$ |
\(y^2=x^3-7560x-302400\) |
40.2.0.a.1 |
$[(120, 720)]$ |
25401600.br1 |
- |
25401600.br |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$55222272$ |
$1.303730$ |
$-4032$ |
$0.43062$ |
$2.32764$ |
$[0, 0, 0, -10290, -480200]$ |
\(y^2=x^3-10290x-480200\) |
40.2.0.a.1 |
$[ ]$ |
25401600.bs1 |
- |
25401600.bs |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{9} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$3.737305129$ |
$1$ |
|
$0$ |
$39444480$ |
$1.135494$ |
$-4032$ |
$0.43062$ |
$2.20924$ |
$[0, 0, 0, -5250, 175000]$ |
\(y^2=x^3-5250x+175000\) |
40.2.0.a.1 |
$[(550/3, 7750/3)]$ |
25401600.bt1 |
- |
25401600.bt |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{9} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1656668160$ |
$3.004330$ |
$-4032$ |
$0.43062$ |
$3.52452$ |
$[0, 0, 0, -9261000, 12965400000]$ |
\(y^2=x^3-9261000x+12965400000\) |
40.2.0.a.1 |
$[ ]$ |
25401600.bu1 |
- |
25401600.bu |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{12} \cdot 5^{10} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$7.782862851$ |
$1$ |
|
$0$ |
$1473085440$ |
$2.943363$ |
$43200/49$ |
$0.72784$ |
$3.39378$ |
$[0, 0, 0, 4961250, -4167450000]$ |
\(y^2=x^3+4961250x-4167450000\) |
8.2.0.a.1 |
$[(7504/3, 632492/3)]$ |
25401600.bv1 |
- |
25401600.bv |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{4} \cdot 7^{8} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$10.37257784$ |
$1$ |
|
$4$ |
$196411392$ |
$1.935911$ |
$43200/49$ |
$0.72784$ |
$2.68474$ |
$[0, 0, 0, 88200, 9878400]$ |
\(y^2=x^3+88200x+9878400\) |
8.2.0.a.1 |
$[(385, 10045), (-80, 1520)]$ |
25401600.bw1 |
- |
25401600.bw |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{12} \cdot 5^{4} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$294617088$ |
$2.138645$ |
$43200/49$ |
$0.72784$ |
$2.82742$ |
$[0, 0, 0, 198450, -33339600]$ |
\(y^2=x^3+198450x-33339600\) |
8.2.0.a.1 |
$[ ]$ |
25401600.bx1 |
- |
25401600.bx |
- |
$1$ |
$1$ |
\( 2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{10} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$10.69515535$ |
$1$ |
|
$0$ |
$982056960$ |
$2.740631$ |
$43200/49$ |
$0.72784$ |
$3.25110$ |
$[0, 0, 0, 2205000, 1234800000]$ |
\(y^2=x^3+2205000x+1234800000\) |
8.2.0.a.1 |
$[(527121/11, 407024331/11)]$ |